• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xu, Chengshun (Xu, Chengshun.) (学者:许成顺) | Feng, Chaoqun (Feng, Chaoqun.) | Du, Xiuli (Du, Xiuli.) (学者:杜修力) | Zhang, Xiaoling (Zhang, Xiaoling.)

收录:

EI Scopus SCIE

摘要:

Most of the saturated soil in actual condition is anisotropically consolidated, and can liquefy during minor earthquake. Based on the analysis of stress state in actual soil, the present paper considers that the stress redistributed during loading process, which result in the liquefaction. However, in present conventional element tests, the liquefaction in anisotropically consolidated saturated sands (ACS) cannot be induced under dynamic cyclic loading without stress reversal. It contributes to the uncertainty about the liquefaction resistance of soil and the development model of excess pore water pressure (PWP). A brief theoretical interpretation within the theory of limit state of soils is given to explain why the liquefaction in ACS could not be induced using the conventional element test under dynamic cyclic load with low or moderate amplitude, and the validity of the theoretical analysis is verified by experiments. The stress redistribution is realized by confining the lateral deformation based on the conventional test, and the liquefaction in ACS under minor cyclic load is realized. Furthermore, a new concept called "continued liquefaction" is proposed. Apart from "transient liquefaction", the PWP, the total confining pressure and the total vertical stress are always at the same level, and the mean effective stress of sands is always zero in the "continued liquefaction" stage. Finally, a suggestion that the development model of PWP should be established on the basis of the ratio of the PWP to the initial vertical stress is recommended.

关键词:

Confined test Anisotropic consolidation Continued liquefaction Stress redistribution Soil liquefaction

作者机构:

  • [ 1 ] [Xu, Chengshun]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 2 ] [Feng, Chaoqun]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 3 ] [Du, Xiuli]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Xiaoling]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China

通讯作者信息:

  • 杜修力

    [Du, Xiuli]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

ENGINEERING GEOLOGY

ISSN: 0013-7952

年份: 2020

卷: 264

7 . 4 0 0

JCR@2022

ESI学科: GEOSCIENCES;

ESI高被引阀值:99

被引次数:

WoS核心集被引频次: 17

SCOPUS被引频次: 21

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:465/4957556
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司