• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Sun, Wei (Sun, Wei.) (学者:孙威) | Min, Xiongkuo (Min, Xiongkuo.) | Zhai, Guangtao (Zhai, Guangtao.) | Gu, Ke (Gu, Ke.) (学者:顾锞) | Duan, Huiyu (Duan, Huiyu.) | Ma, Siwei (Ma, Siwei.)

收录:

EI Scopus SCIE

摘要:

360-degree images/videos have been dramatically increasing in recent years. The characteristic of omnidirectional-view results in high resolution of 360-degree images/videos, which makes them difficult to be transported and stored. To deal with the problem, video coding technologies are used to compress the omnidirectional content but they will introduce the compression distortion. Therefore, it is important to study how popular coding technologies affect the quality of 360-degree images. In this paper, we present a study on both subjective and objective quality assessment of compressed virtual reality (VR) images. We first build a compressed VR image quality (CVIQ) database including 16 reference images and 528 compressed ones with three prevailing coding technologies. Then, we propose a multi-channel convolution neural network (CNN) for blind 360-degree image quality assessment (MC360IQA). To be consistent with the visual content seen in the VR device, we project each 360-degree image into six viewport images, which are adopted as inputs of the proposed model. MC360IQA consists of two parts, a multi-channel CNN and an image quality regressor. The multi-channel CNN includes six parallel hyper-ResNet34 networks, where the hyper structure is used to incorporate the features from intermediate layers. The image quality regressor fuses the features and regresses them to final scores. The experimental results show that our model achieves the best performance among the state-of-art full-reference (FR) and no-reference (NR) image quality assessment (IQA) models on the CVIQ database and other available 360-degree IQA database.

关键词:

Image quality convolution neural network 360-degree images Distortion Indexes Image coding Streaming media hyper-structure image quality assessment Quality assessment

作者机构:

  • [ 1 ] [Sun, Wei]Shanghai Jiao Tong Univ, AI Inst, MoE Key Lab Artificial Intelligence, Shanghai 200240, Peoples R China
  • [ 2 ] [Min, Xiongkuo]Shanghai Jiao Tong Univ, AI Inst, MoE Key Lab Artificial Intelligence, Shanghai 200240, Peoples R China
  • [ 3 ] [Zhai, Guangtao]Shanghai Jiao Tong Univ, AI Inst, MoE Key Lab Artificial Intelligence, Shanghai 200240, Peoples R China
  • [ 4 ] [Duan, Huiyu]Shanghai Jiao Tong Univ, AI Inst, MoE Key Lab Artificial Intelligence, Shanghai 200240, Peoples R China
  • [ 5 ] [Sun, Wei]Shanghai Jiao Tong Univ, Inst Image Commun & Informat Proc, Shanghai 200240, Peoples R China
  • [ 6 ] [Min, Xiongkuo]Shanghai Jiao Tong Univ, Inst Image Commun & Informat Proc, Shanghai 200240, Peoples R China
  • [ 7 ] [Zhai, Guangtao]Shanghai Jiao Tong Univ, Inst Image Commun & Informat Proc, Shanghai 200240, Peoples R China
  • [ 8 ] [Duan, Huiyu]Shanghai Jiao Tong Univ, Inst Image Commun & Informat Proc, Shanghai 200240, Peoples R China
  • [ 9 ] [Gu, Ke]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 10 ] [Ma, Siwei]Peking Univ, Inst Digital Media, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China

通讯作者信息:

  • [Zhai, Guangtao]Shanghai Jiao Tong Univ, AI Inst, MoE Key Lab Artificial Intelligence, Shanghai 200240, Peoples R China

查看成果更多字段

相关关键词:

来源 :

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING

ISSN: 1932-4553

年份: 2020

期: 1

卷: 14

页码: 64-77

7 . 5 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:115

被引次数:

WoS核心集被引频次: 119

SCOPUS被引频次: 149

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:640/3897344
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司