• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Shaofan (Wang, Shaofan.) | Wang, Weixing (Wang, Weixing.) | Huang, Shiyu (Huang, Shiyu.) | Han, Yuwei (Han, Yuwei.) | Wei, Fuhao (Wei, Fuhao.) | Yin, Baocai (Yin, Baocai.) (学者:尹宝才)

收录:

EI Scopus SCIE

摘要:

Nowcasting the vehicular delay at intersections of road networks not only optimizes the signal timing at the intersections, but also alleviates traffic congestion effectively. Existing research work on the vehicular delay nowcasting involves two issues: low effectiveness on low-ping frequency trajectory data, and low efficiency for the nowcasting task. Inspired by recent works on hypergraphs which explore the high-order relationship of trajectory points, we propose an incremental hypergraph learning framework for nowcasting the control delay of vehicles from low-ping frequency trajectories. The framework characterizes the relationship among trajectory points using multi-kernel learning of multiple attributes of trajectory points. Then, it predicts the unknown trajectory points by incrementally constructing hypergraphs of both observed and unknown points and examining the total similarities of hyperedges associated with all the points. Finally, it evaluates the control delay of each trajectory precisely and efficiently based on the timestamp difference of critical points. We conduct experiments on the Didi-Chengdu dataset with 10-second ping frequency. Our framework outperforms state-of-the-art methods in both the accuracy and efficiency (with 6 seconds at each intersection averagely) for the control delay nowcasting task. That facilitates our framework for many real-world traffic scenarios.

关键词:

incremental hypergraph learning trajectory prediction Trajectory Hidden Markov models Frequency control Predictive models multi-kernel affinity learning Task analysis Delays Markov processes Control delay nowcasting

作者机构:

  • [ 1 ] [Wang, Shaofan]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Weixing]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 3 ] [Huang, Shiyu]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 4 ] [Han, Yuwei]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 5 ] [Wei, Fuhao]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 6 ] [Yin, Baocai]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China

通讯作者信息:

  • [Yin, Baocai]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China;;

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

ISSN: 0018-9545

年份: 2024

期: 1

卷: 73

页码: 185-199

6 . 8 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:554/4943252
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司