• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Ding (Wang, Ding.) (学者:王鼎) | Liu, Ao (Liu, Ao.) | Qiao, Junfei (Qiao, Junfei.)

收录:

EI Scopus SCIE

摘要:

In this paper, we develop an improved data-based integral policy iteration method to address the robust control issue for nonlinear systems. Combining multi-step neural networks with pre-training, the condition of selecting the initial admissible control policy is relaxed even though the information of system dynamics is unknown. Based on adaptive critic learning, the established algorithm is conducted to attain the optimal controller. Then, the robust control strategy is derived by adding the feedback gain. Furthermore, the computing error is considered during the process of implementing matrix inverse operation. Finally, two examples are presented to verify the effectiveness of the constructed algorithm.

关键词:

multi-step neural networks robust control uncertain systems integral policy iteration Adaptive critic learning

作者机构:

  • [ 1 ] [Wang, Ding]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Liu, Ao]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Wang, Ding]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing, Peoples R China
  • [ 5 ] [Liu, Ao]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing, Peoples R China
  • [ 6 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing, Peoples R China
  • [ 7 ] [Wang, Ding]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing, Peoples R China
  • [ 8 ] [Liu, Ao]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing, Peoples R China
  • [ 9 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing, Peoples R China
  • [ 10 ] [Wang, Ding]Beijing Univ Technol, Beijing Lab Smart Environm Protect, Beijing, Peoples R China
  • [ 11 ] [Liu, Ao]Beijing Univ Technol, Beijing Lab Smart Environm Protect, Beijing, Peoples R China
  • [ 12 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Lab Smart Environm Protect, Beijing, Peoples R China
  • [ 13 ] [Wang, Ding]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 14 ] [Wang, Ding]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
  • [ 15 ] [Wang, Ding]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China
  • [ 16 ] [Wang, Ding]Beijing Univ Technol, Beijing Lab Smart Environm Protect, Beijing 100124, Peoples R China

通讯作者信息:

  • 王鼎

    [Wang, Ding]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Wang, Ding]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China;;[Wang, Ding]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China;;[Wang, Ding]Beijing Univ Technol, Beijing Lab Smart Environm Protect, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE

ISSN: 0020-7721

年份: 2024

期: 8

卷: 55

页码: 1571-1583

4 . 3 0 0

JCR@2022

被引次数:

WoS核心集被引频次: 2

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:307/4973934
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司