• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Honggui (Han, Honggui.) | Liu, Yucheng (Liu, Yucheng.) | Qiao, Junfei (Qiao, Junfei.)

收录:

EI Scopus SCIE

摘要:

Set-point optimization of wastewater treatment process (WWTP) is critical for energy savings but is challenging due to complex nonlinear mechanisms and measurement noises. To address this optimization problem, a mechanism-data-driven multiobjective optimization method is developed to alleviate deficiencies in mechanisms and process data. First, a mechanism-data-driven model is established to describe the relationships between effluent quality, energy consumption, and key process variables. Then, the mechanisms and process data can be collaboratively leveraged to alleviate the inaccuracy of mechanism models and suppress measurement noises. Second, a weighted indicator-based multiobjective particle swarm optimization algorithm is proposed to suppress uncertainties introduced by measurement noises. Then, the set-points with noise robustness are obtained to improve optimization performance under real restricted conditions. Third, the proposed method is applied to the benchmark simulation model No. 1 to evaluate its capability. The results demonstrate that this method can improve the optimization performance of WWTP.

关键词:

Mechanism-data-driven modeling particle swarm optimization wastewater treatment process (WWTP) multiobjective optimization

作者机构:

  • [ 1 ] [Han, Honggui]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol,Beijing Key Lab Computat Inte, Engn Res Ctr Digital Community,Minist Educ, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Yucheng]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol,Beijing Key Lab Computat Inte, Engn Res Ctr Digital Community,Minist Educ, Beijing 100124, Peoples R China
  • [ 3 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol,Beijing Key Lab Computat Inte, Engn Res Ctr Digital Community,Minist Educ, Beijing 100124, Peoples R China
  • [ 4 ] [Han, Honggui]Beijing Univ Technol, Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 5 ] [Liu, Yucheng]Beijing Univ Technol, Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 6 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China

通讯作者信息:

  • [Han, Honggui]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol,Beijing Key Lab Computat Inte, Engn Res Ctr Digital Community,Minist Educ, Beijing 100124, Peoples R China;;[Han, Honggui]Beijing Univ Technol, Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

ISSN: 1551-3203

年份: 2024

期: 5

卷: 20

页码: 7810-7819

1 2 . 3 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:446/4950099
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司