• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhao, Mingming (Zhao, Mingming.) | Wang, Ding (Wang, Ding.) | Li, Menghua (Li, Menghua.) | Gao, Ning (Gao, Ning.) | Qiao, Junfei (Qiao, Junfei.)

收录:

EI Scopus SCIE

摘要:

This article aims to design a model-free adaptive tracking controller for discrete-time nonlinear systems with unknown dynamics and asymmetric control constraints. First, a new Q-function structure is designed by introducing the control input into the tracking error of the next moment, in order to eliminate the final tracking error, avoid the steady control, and ignore the discount factor. Second, via system transformation, a general performance index is developed to overcome the challenge caused by asymmetric constraints of implicit control inputs. By this operation, the constrained tracking problem is converted to an unconstrained optimal tracking problem without the traditional nonquadratic performance function that is only applicable to explicit control inputs. Then, a value-iteration-based Q-learning (VIQL) algorithm is derived to seek the optimal Q-function and the optimal control policy by using offline data rather than the mathematical model. Next, the convergence, monotonicity, and stability properties of VIQL are investigated to demonstrate that the iterative Q-function sequence can converge to the optimal Q-function under ideal conditions. To realize the VIQL algorithm, the critic neural network is employed to approximate the Q-function. Finally, simulation results and comparative experiments are conducted to demonstrate the validity and effectiveness of the present VIQL scheme.

关键词:

model-free adaptive optimal tracking adaptive dynamic programming asymmetric control constraints value-iteration-based Q-learning

作者机构:

  • [ 1 ] [Zhao, Mingming]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Wang, Ding]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Li, Menghua]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Gao, Ning]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 5 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 6 ] [Zhao, Mingming]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing, Peoples R China
  • [ 7 ] [Wang, Ding]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing, Peoples R China
  • [ 8 ] [Li, Menghua]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing, Peoples R China
  • [ 9 ] [Gao, Ning]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing, Peoples R China
  • [ 10 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing, Peoples R China
  • [ 11 ] [Zhao, Mingming]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing, Peoples R China
  • [ 12 ] [Wang, Ding]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing, Peoples R China
  • [ 13 ] [Li, Menghua]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing, Peoples R China
  • [ 14 ] [Gao, Ning]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing, Peoples R China
  • [ 15 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing, Peoples R China
  • [ 16 ] [Zhao, Mingming]Beijing Univ Technol, Beijing Lab Smart Environm Protect, Beijing, Peoples R China
  • [ 17 ] [Wang, Ding]Beijing Univ Technol, Beijing Lab Smart Environm Protect, Beijing, Peoples R China
  • [ 18 ] [Li, Menghua]Beijing Univ Technol, Beijing Lab Smart Environm Protect, Beijing, Peoples R China
  • [ 19 ] [Gao, Ning]Beijing Univ Technol, Beijing Lab Smart Environm Protect, Beijing, Peoples R China
  • [ 20 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Lab Smart Environm Protect, Beijing, Peoples R China
  • [ 21 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING

ISSN: 0890-6327

年份: 2024

期: 5

卷: 38

页码: 1561-1578

3 . 1 0 0

JCR@2022

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:370/4972846
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司