• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qiao, Junfei (Qiao, Junfei.) | Zhao, Mingming (Zhao, Mingming.) | Wang, Ding (Wang, Ding.) (学者:王鼎) | Li, Menghua (Li, Menghua.)

收录:

EI Scopus SCIE

摘要:

The wastewater treatment process (WWTP) is beneficial for maintaining sufficient water resources and recycling wastewater. A crucial link of WWTP is to ensure that the dissolved oxygen (DO) concentration is continuously maintained at the predetermined value, which can actually be considered as a tracking problem. In this article, an experience replay-based action-dependent heuristic dynamic programming (ER-ADHDP) method is developed to design the model-free tracking controller to accomplish the tracking goal of the DO concentration. First, the online ER-ADHDP controller is regarded as a supplementary controller to conduct the model-free tracking control alongside a stabilizing controller with a priori knowledge. The online ER-ADHDP method can adaptively adjust weight parameters of critic and action networks, thereby continuously ameliorating the tracking result over time. Second, the ER technique is integrated into the critic and action networks to promote the data utilization efficiency and accelerate the learning process. Third, a rational stability result is provided to theoretically ensure the usefulness of the ER-ADHDP tracking design. Finally, simulation experiments including different reference trajectories are conducted to show the superb tracking performance and excellent adaptability of the proposed ER-ADHDP method.

关键词:

wastewater treatment applications tracking control Action-dependent heuristic dynamic programming (ADHDP) adaptive dynamic programming (ADP) adaptive critic control

作者机构:

  • [ 1 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
  • [ 2 ] [Zhao, Mingming]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Ding]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Menghua]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
  • [ 5 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China
  • [ 6 ] [Zhao, Mingming]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China
  • [ 7 ] [Wang, Ding]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China
  • [ 8 ] [Li, Menghua]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China

通讯作者信息:

  • 王鼎

    [Wang, Ding]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

ISSN: 1551-3203

年份: 2024

期: 4

卷: 20

页码: 6257-6265

1 2 . 3 0 0

JCR@2022

被引次数:

WoS核心集被引频次: 7

SCOPUS被引频次: 9

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:394/4969493
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司