• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Meng, Qingan (Meng, Qingan.) | Zeng, Wei (Zeng, Wei.) (Scholars:曾薇) | Zhang, Jiayu (Zhang, Jiayu.) | Liu, Hongjun (Liu, Hongjun.) | Li, Shuangshuang (Li, Shuangshuang.) | Peng, Yongzhen (Peng, Yongzhen.)

Indexed by:

EI Scopus SCIE

Abstract:

Conventional biological nutrient removal processes rely on external aeration and produce significant carbon dioxide (CO2) emissions. This study constructed a phototrophic simultaneous nitrification-denitrification phosphorus removal (P-SNDPR) system to treat low carbon to nitrogen (C/N) ratios wastewater and investigated the impact of sludge retention time (SRT) on nutrient removal performance, nitrogen conversion pathway, and microbial structure. Results showed that the P-SNDPR system at SRT of 15 days had the highest nutrient removal capacity, achieving over 85% and 98% removal of nitrogen and phosphorus, respectively, meanwhile maintaining minimal CO2 emissions. Nitrogen removal was mainly through assimilation at SRTs of 5 and 10 days, and nitrification-denitrification at SRTs of 15 and 20 days. Stable partial nitrification was facilitated by photoinhibition and low DO levels. Flow cytometry sorting technique results revealed SRT drove community structural changes in translational activity (BONCAT+) microbes, where BONCAT+ microbes were mainly simultaneous nitrogen and phosphorus removal bacteria (Candidatus Accumulibacter), denitrifying bacteria (Candidatus Competibacter and Plasticicumulans), ammonia-oxidizing bacteria (Nitrosomonas), and microalgae (Chlorella and Dictyosphaerium). The P-SNDPR system represents a novel, carbon-neutral process for efficient nutrient removal from low C/N ratio wastewater without aeration and external carbon source additions.

Keyword:

sludge retention time flow cytometry sorting microalgal-bacterial systems translationactive low carbon to nitrogen ratio wastewater

Author Community:

  • [ 1 ] [Meng, Qingan]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 2 ] [Zeng, Wei]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Jiayu]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 4 ] [Liu, Hongjun]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Shuangshuang]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 6 ] [Peng, Yongzhen]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 曾薇

    [Zeng, Wei]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Related Article:

Source :

ENVIRONMENTAL SCIENCE & TECHNOLOGY

ISSN: 0013-936X

Year: 2024

Issue: 6

Volume: 58

Page: 2902-2911

1 1 . 4 0 0

JCR@2022

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 9

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 3

Affiliated Colleges:

Online/Total:443/5459036
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.