• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wu, Jiahao (Wu, Jiahao.) | Zhan, Jingyuan (Zhan, Jingyuan.) | Zhang, Liguo (Zhang, Liguo.) (学者:张利国)

收录:

CPCI-S EI

摘要:

This paper studies the problem of the adaptive boundary observer design for the Aw-Rascle-Zhang (ARZ) traffic flow model, which is subject to both relaxation time uncertainty in the domain and boundary input disturbance. The boundary input disturbance comes from merging vehicles' velocities at the downstream on-ramp, and we scale the disturbance by a low-pass filter based on the ordinary differential equation (ODE). Then, the ARZ model with the domain uncertainty and boundary input disturbance can be linearized to a coupled ODEPDE system. Based on the swapping transformation, an adaptive boundary observer with least-squares type parameter estimation is designed to estimate the traffic states, the domain uncertainty, and the boundary input disturbance, simultaneously. The exponential convergence conditions w.r.t. observer feedback gains are given by employing the Lyapunov technique. Finally, the simulation results are presented to illustrate the effectiveness of the designed adaptive boundary observer.

关键词:

Coupled ODE-hyperbolic PDE Lyapunov technique ARZ traffic flow model Uncertain parameter Adaptive observer

作者机构:

  • [ 1 ] [Wu, Jiahao]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Zhan, Jingyuan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Liguo]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Wu, Jiahao]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 5 ] [Zhan, Jingyuan]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 6 ] [Zhang, Liguo]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

IFAC PAPERSONLINE

ISSN: 2405-8963

年份: 2023

期: 2

卷: 56

页码: 8964-8969

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:386/4969578
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司