• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Ming (Yang, Ming.) | Li, Yun-Zhang (Li, Yun-Zhang.) (学者:李云章)

收录:

Scopus SCIE

摘要:

Quaternion algebra is a noncommutative associative algebra. Noncommutativity limits the flexibility of computation and makes analysis related to quaternions nontrivial and challenging. Due to its applications in signal analysis and image processing, quaternionic Fourier analysis has received increasing attention in recent years. This paper addresses phase retrievability in quaternion Euclidean spaces HM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}<^>{M}$$\end{document}. We obtain a sufficient condition on phase retrieval frames for quaternionic left Hilbert module (HM,(center dot,center dot))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big ({\mathbb {H}}<^>{M},\,(\cdot ,\,\cdot )\big )$$\end{document} of the form {emTng}m,n is an element of NM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e_{m}T_{n}g\}_{m,\,n\in {\mathbb {N}}_{M}}$$\end{document}, where {em}m is an element of NM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e_{m}\}_{m\in {\mathbb {N}}_{M}}$$\end{document} is an orthonormal basis for (HM,(center dot,center dot))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big ({\mathbb {H}}<^>{M},\,(\cdot ,\,\cdot )\big )$$\end{document} and (center dot,center dot)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\cdot ,\,\cdot )$$\end{document} is the Euclidean inner product on HM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}<^>{M}$$\end{document}. It is worth noting that {em}m is an element of NM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e_{m}\}_{m\in {\mathbb {N}}_{M}}$$\end{document} is not necessarily 1Me2 pi im center dot Mm is an element of NM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ \frac{1}{\sqrt{M}}e<^>{\frac{2\pi im\cdot }{M}}\right\} _{m\in {\mathbb {N}}_{M}}$$\end{document}, and that our method also applies to phase retrievability in CM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}<^>{M}$$\end{document}. For the real Hilbert space (HM,⟨center dot,center dot⟩)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big ({\mathbb {H}}<^>{M},\,\langle \cdot ,\,\cdot \rangle \big )$$\end{document} induced by (HM,(center dot,center dot))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big ({\mathbb {H}}<^>{M},\,(\cdot ,\,\cdot )\big )$$\end{document}, we present a sufficient condition on phase retrieval frames {emTng}m is an element of N4M,n is an element of NM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e_{m}T_{n}g\}_{m\in {\mathbb {N}}_{4M},\,n\in {\mathbb {N}}_{M}}$$\end{document}, where {em}m is an element of N4M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e_{m}\}_{m\in {\mathbb {N}}_{4M}}$$\end{document} is an orthonormal basis for (HM,⟨center dot,center dot⟩)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big ({\mathbb {H}}<^>{M},\,\langle \cdot ,\,\cdot \rangle \big )$$\end{document}. We also give a method to construct and verify general phase retrieval frames for (HM,⟨center dot,center dot⟩)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big ({\mathbb {H}}<^>{M},\,\langle \cdot ,\,\cdot \rangle \big )$$\end{document}. Finally, some examples are provided to illustrate the generality of our theory.

关键词:

Frame Quaternion Phase retrieval

作者机构:

  • [ 1 ] [Yang, Ming]Beijing Univ Technol, Sch Math Stat & Mech, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Yun-Zhang]Beijing Univ Technol, Sch Math Stat & Mech, Beijing 100124, Peoples R China

通讯作者信息:

  • 李云章

    [Li, Yun-Zhang]Beijing Univ Technol, Sch Math Stat & Mech, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY

ISSN: 0126-6705

年份: 2024

期: 2

卷: 47

1 . 2 0 0

JCR@2022

被引次数:

WoS核心集被引频次: 4

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:401/4968229
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司