• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

He, Ming (He, Ming.) | Zhang, Han (Zhang, Han.) | Zhang, Zihao (Zhang, Zihao.) | Liu, Chang (Liu, Chang.)

收录:

EI Scopus SCIE

摘要:

Recommender systems often suffer from severe performance drops due to popularity distribution shift (PDS), which arises from inconsistencies in item popularity between training and test data. Most existing methods aimed at mitigating PDS focus on reducing popularity bias, but they usually require inaccessible information or rely on implausible assumptions. To solve the above problem, in this work, we propose a novel framework called Invariant Representation Learning (IRL) to PDS. Specifically, for simulating diverse popularity environments where popular items and active users become even more popular and active, or conversely, we apply perturbations to the user-item interaction matrix by adjusting the weights of popular items and active users in the matrix, without any prior assumptions or specialized information. In different simulated popularity environments, dissimilarities in the distribution of representations for items and users occur. We further utilize contrastive learning to minimize the dissimilarities among the representations of users and items under different simulated popularity environments, resulting in invariant representations that remain consistent across varying popularity distributions. Extensive experiments on three real-world datasets demonstrate that IRL outperforms state-of-the-art baselines in effectively alleviating PDS for recommendation.

关键词:

Recommender systems Popularity distribution shift Contrastive learning Invariant representation learning

作者机构:

  • [ 1 ] [He, Ming]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Han]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Zihao]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Liu, Chang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [He, Ming]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS

ISSN: 1386-145X

年份: 2024

期: 2

卷: 27

3 . 7 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:461/4953810
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司