• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Hong-Gui (Han, Hong-Gui.) | Feng, Cheng-Cheng (Feng, Cheng-Cheng.) | Sun, Hao-Yuan (Sun, Hao-Yuan.) | Qiao, Jun-Fei (Qiao, Jun-Fei.)

收录:

EI Scopus SCIE

摘要:

For the uncertain nonlinear systems, the disturbance caused by external factors can affect the accuracy of tracking control. To solve this issue, a hierarchical self-organizing fuzzy control (HSOFC) strategy is proposed to improve the tracking control performance. First, the self-organizing fuzzy neural network is employed as a fuzzy approximator to estimate the unknown nonlinear function. Specifically, a hierarchical strategy is designed to improve the estimation accuracy by preventing the wrong pruning of rules, without setting the pruning threshold based on rule density and significance. Second, an additional robust control component based on sliding mode surface is designed to suppress the influence on the control performance by external disturbances and the approximation error. Furthermore, to further improve the robust control performance and reduce computational complexity, an adaptive allocation strategy is studied to set the parameters of HSOFC. Finally, the stability of HSOFC is proven. The simulation results show that HSOFC can reduce computational complexity and obtain accurate tracking control performance.

关键词:

hierarchical self-organizing robust control component sliding mode control Fuzzy neural network uncertain nonlinear systems

作者机构:

  • [ 1 ] [Han, Hong-Gui]Beijing Univ Technol, Fac Informat Technol, Beijing Artificial Intelligence Inst, Engn Res Ctr Digital Community,Beijing Key Lab Com, Beijing 100124, Peoples R China
  • [ 2 ] [Feng, Cheng-Cheng]Beijing Univ Technol, Fac Informat Technol, Beijing Artificial Intelligence Inst, Engn Res Ctr Digital Community,Beijing Key Lab Com, Beijing 100124, Peoples R China
  • [ 3 ] [Sun, Hao-Yuan]Beijing Univ Technol, Fac Informat Technol, Beijing Artificial Intelligence Inst, Engn Res Ctr Digital Community,Beijing Key Lab Com, Beijing 100124, Peoples R China
  • [ 4 ] [Qiao, Jun-Fei]Beijing Univ Technol, Fac Informat Technol, Beijing Artificial Intelligence Inst, Engn Res Ctr Digital Community,Beijing Key Lab Com, Beijing 100124, Peoples R China
  • [ 5 ] [Han, Hong-Gui]Beijing Univ Technol, Minist Educ, Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 6 ] [Feng, Cheng-Cheng]Beijing Univ Technol, Minist Educ, Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 7 ] [Sun, Hao-Yuan]Beijing Univ Technol, Minist Educ, Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 8 ] [Qiao, Jun-Fei]Beijing Univ Technol, Minist Educ, Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China

通讯作者信息:

  • [Han, Hong-Gui]Beijing Univ Technol, Fac Informat Technol, Beijing Artificial Intelligence Inst, Engn Res Ctr Digital Community,Beijing Key Lab Com, Beijing 100124, Peoples R China;;[Han, Hong-Gui]Beijing Univ Technol, Minist Educ, Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON FUZZY SYSTEMS

ISSN: 1063-6706

年份: 2024

期: 4

卷: 32

页码: 2471-2482

1 1 . 9 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:524/4982890
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司