• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Jiafeng (Li, Jiafeng.) | Kuang, Lingyan (Kuang, Lingyan.) | Jin, Jiaqi (Jin, Jiaqi.) | Zhuo, Li (Zhuo, Li.) | Zhang, Jing (Zhang, Jing.) (学者:张菁)

收录:

EI Scopus SCIE

摘要:

Haze reduces the imaging effectiveness of outdoor vision systems, significantly degrading the quality of images; hence, reducing haze has been a focus of many studies. In recent years, decoupled representation learning has been applied in image processing; however, existing decoupled networks lack a specific design for information with different characteristics to achieve satisfactory results in dehazing tasks. This study proposes a heterogeneous decoupling unsupervised dehazing network (HDUD-Net). Heterogeneous modules are used to learn the content and haze information of images individually to separate them effectively. To address the problem of information loss when extracting the content from hazy images with complex noise, this study proposes a bi-branch multi-hierarchical feature fusion module. Additionally, it proposes a style feature contrast learning method to generate positive and negative sample queues and construct contrast loss for enhancing decoupling performance. Numerous experiments confirm that the proposed algorithm achieves higher performance according to objective metrics and a more realistic visual effect when compared with state-of-the-art single-image dehazing algorithms.

关键词:

Unsupervised learning Single image dehazing Image restoration Image enhancement

作者机构:

  • [ 1 ] [Li, Jiafeng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Kuang, Lingyan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Jin, Jiaqi]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Zhuo, Li]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Jing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Li, Jiafeng]Beijing Univ Technol, Key Lab Computat Intelligence & Intelligent Syst, Beijing 100124, Peoples R China
  • [ 7 ] [Kuang, Lingyan]Beijing Univ Technol, Key Lab Computat Intelligence & Intelligent Syst, Beijing 100124, Peoples R China
  • [ 8 ] [Jin, Jiaqi]Beijing Univ Technol, Key Lab Computat Intelligence & Intelligent Syst, Beijing 100124, Peoples R China
  • [ 9 ] [Zhuo, Li]Beijing Univ Technol, Key Lab Computat Intelligence & Intelligent Syst, Beijing 100124, Peoples R China
  • [ 10 ] [Zhang, Jing]Beijing Univ Technol, Key Lab Computat Intelligence & Intelligent Syst, Beijing 100124, Peoples R China

通讯作者信息:

  • [Li, Jiafeng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Li, Jiafeng]Beijing Univ Technol, Key Lab Computat Intelligence & Intelligent Syst, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

NEURAL COMPUTING & APPLICATIONS

ISSN: 0941-0643

年份: 2024

期: 6

卷: 36

页码: 2695-2711

6 . 0 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:509/4953309
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司