• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Junhao (Chen, Junhao.) | Wang, Xueli (Wang, Xueli.) | Lei, Fei (Lei, Fei.)

收录:

EI Scopus SCIE

摘要:

In this paper, we modify the proof methods of some previously weakly consistent variants of random forest into strongly consistent proof methods, and improve the data utilization of these variants in order to obtain better theoretical properties and experimental performance. In addition, we propose the Data-driven Multinomial Random Forest (DMRF) algorithm, which has the same complexity with BreimanRF (proposed by Breiman) while satisfying strong consistency with probability 1. It has better performance in classification and regression tasks than previous RF variants that only satisfy weak consistency, and in most cases even surpasses BreimanRF in classification tasks. To the best of our knowledge, DMRF is currently a low-complexity and high-performing variation of random forest that achieves strong consistency with probability 1.

关键词:

Strong consistency Machine learning Classification Regression Random forest

作者机构:

  • [ 1 ] [Chen, Junhao]Beijing Univ Technol, Sch Math Stat & Mech, Beijing, Peoples R China
  • [ 2 ] [Wang, Xueli]Beijing Univ Technol, Sch Math Stat & Mech, Beijing, Peoples R China
  • [ 3 ] [Lei, Fei]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

  • [Chen, Junhao]Beijing Univ Technol, Sch Math Stat & Mech, Beijing, Peoples R China;;[Wang, Xueli]Beijing Univ Technol, Sch Math Stat & Mech, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

JOURNAL OF BIG DATA

年份: 2024

期: 1

卷: 11

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:312/4970539
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司