• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Zichu (Liu, Zichu.) | Quan, Zhenhua (Quan, Zhenhua.) | Zhao, Yaohua (Zhao, Yaohua.) | Zhang, Wanlin (Zhang, Wanlin.) | Yang, Mingguang (Yang, Mingguang.) | Chang, Zejian (Chang, Zejian.)

收录:

Scopus SCIE

摘要:

Accurately predicting the refrigerant mass flow rate through the electronic expansion valve (EEV) is crucial for improving the system's performance and achieving intelligent control. However, the refrigerant mass flow rate model applicable to the direct-expansion ice thermal storage (DX-ITS) system for a wide range of flow rates is rare in the open literature. In this study, Buckingham-pi theorem and artificial neural network (ANN) are adopted to predict the refrigerant mass flow rate through the EEV of the DX-ITS system using R134a. The dimensionless pi-groups and optimal number of neurons in hidden layers of ANN model are obtained. The obtained ANN model shows good accuracy, and over 95.7 % of the predicted data are within the 15 % error band. Results indicate that the EEV outlet pressure has a significant impact on the refrigerant mass flow rate compared with the inlet pressure, the average increase in refrigerant mass flow rate is 43.76 kg/h with an outlet pressure increase of 0.05 MPa. Moreover, the refrigerant mass flow rate gently rises with the increase of superheat temperature under fixed EEV inlet and outlet pressure. On average, every 2 degrees C increase in superheat temperature leads to an approximately 3.98 kg/h increase in refrigerant mass flow rate.

关键词:

Electronic expansion valve Direct-expansion ice thermal storage Artificial neural network Mass flow characteristics Dimensionless correlation

作者机构:

  • [ 1 ] [Liu, Zichu]Beijing Univ Technol, Inst Civil & Architectural Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Quan, Zhenhua]Beijing Univ Technol, Inst Civil & Architectural Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Zhao, Yaohua]Beijing Univ Technol, Inst Civil & Architectural Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Wanlin]Beijing Univ Technol, Inst Civil & Architectural Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Yang, Mingguang]Beijing Univ Technol, Inst Civil & Architectural Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Chang, Zejian]Beijing Univ Technol, Inst Civil & Architectural Engn, Beijing 100124, Peoples R China
  • [ 7 ] [Zhao, Yaohua]Boyi New Energy Sci & Technol Dev Co Ltd, Zibo 255000, Peoples R China

通讯作者信息:

  • [Quan, Zhenhua]Beijing Univ Technol, Inst Civil & Architectural Engn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ENERGY

ISSN: 0360-5442

年份: 2024

卷: 291

9 . 0 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:342/4978114
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司