• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zeng, Jie (Zeng, Jie.) | Cheng, Weihu (Cheng, Weihu.) | Hu, Guozhi (Hu, Guozhi.)

收录:

Scopus SCIE

摘要:

We consider model averaging estimation problem in the linear regression model with missing response data, that allows for model misspecification. Based on the 'complete' data set for the response variable after inverse propensity score weighted imputation, we construct a leave-one-out cross-validation criterion for allocating model weights, where the propensity score model is estimated by the covariate balancing propensity score method. We derive some theoretical results to justify the proposed strategy. Firstly, when all candidate outcome regression models are misspecified, our procedures are proved to achieve optimality in terms of asymptotically minimizing the squared loss. Secondly, when the true outcome regression model is among the set of candidate models, the resulting model averaging estimators of the regression parameters are shown to be root-n consistent. Simulation studies provide evidence of the superiority of our methods over other existing model averaging methods, even when the propensity score model is misspecified. As an illustration, the approach is further applied to study the CD4 data.

关键词:

Model averaging Missing data Asymptotic optimality Covariate balancing propensity score Cross-validation

作者机构:

  • [ 1 ] [Zeng, Jie]Hefei Normal Univ, Sch Math & Stat, Hefei, Peoples R China
  • [ 2 ] [Hu, Guozhi]Hefei Normal Univ, Sch Math & Stat, Hefei, Peoples R China
  • [ 3 ] [Cheng, Weihu]Beijing Univ Technol, Fac Sci, Beijing, Peoples R China

通讯作者信息:

  • [Hu, Guozhi]Hefei Normal Univ, Sch Math & Stat, Hefei, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF THE KOREAN STATISTICAL SOCIETY

ISSN: 1226-3192

年份: 2024

期: 3

卷: 53

页码: 583-616

0 . 6 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:539/4983287
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司