• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Manying (Liu, Manying.) | Li, Yuqing (Li, Yuqing.) | Zhang, Dongtao (Zhang, Dongtao.) | Wu, Qiong (Wu, Qiong.) | Yang, Jianjun (Yang, Jianjun.) | Zhang, Hongguo (Zhang, Hongguo.) | Zhang, Lele (Zhang, Lele.) | Yue, Ming (Yue, Ming.) (学者:岳明)

收录:

EI Scopus SCIE

摘要:

The precipitation-hardening Sm-Co magnets not only have irreplaceable applications under extreme conditions such as high temperatures, but are also the most typical magnets with pinning-controlled magnetization reversal mechanism. However, there have always been two views on this type of pinning, attractive or repulsive. In this article, the modification of the parallel interface to the titled interface, led to occurrence of quasi-repulsive and quasi-attractive pinning modes, by employing micromagnetic simulation methods. The corresponding domain wall energy relationship between the pinning phase and main phase was analyzed for different pinning modes, according to the morphology of domain wall from the simulation results. The analysis results indicated that relatively small difference in domain wall energy between the two phases led to quasi-repetitive and quasi-attractive pinning modes. Our findings can provide a reference for further understanding of the magnetization reversal mechanism of precipitation-hardening Sm-Co magnets. The emphasis on the influence of 1:5/2:17 interface orientation on pinning also provided a perspective on the magnetization reversal mechanism of other nanostructured permanent magnet materials.

关键词:

作者机构:

  • [ 1 ] [Liu, Manying]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Yuqing]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Dongtao]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China
  • [ 4 ] [Wu, Qiong]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China
  • [ 5 ] [Yang, Jianjun]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China
  • [ 6 ] [Zhang, Hongguo]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China
  • [ 7 ] [Zhang, Lele]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China
  • [ 8 ] [Yue, Ming]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China
  • [ 9 ] [Yang, Jianjun]Anyang Inst Technol, Sch Mech Engn, Anyang 455000, Peoples R China

通讯作者信息:

  • 岳明

    [Li, Yuqing]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China;;[Yue, Ming]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

APPLIED PHYSICS LETTERS

ISSN: 0003-6951

年份: 2024

期: 4

卷: 124

4 . 0 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:475/4961608
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司