• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Ke (Wang, Ke.) | Jia, Song-Min (Jia, Song-Min.) (学者:贾松敏) | Xu, Tao (Xu, Tao.) | Li, Xiu-Zhi (Li, Xiu-Zhi.)

收录:

EI Scopus PKU CSCD

摘要:

A real-time dense method to address the problem of mobile robot simultaneous localization and 3D mapping (3D SLAM) in complex indoor environment is proposed. In this approach, the environmental data is captured by using a RGB-D camera which is fixed on the robot. Combining with the local texture association, a hybrid algorithm model is established to ensure the pose estimation accuracy and concurrently decrease the failure rate during mapping by using the point cloud and image texture. By taking advantage of the keyframe selection mechanism, a visual-based loop detection algorithm and tree-based network optimizer (TORO) are used to achieve a global consistency map. Experimental results show the feasibility and effectiveness of the proposed algorithm in the indoor environment. ©, 2015, Northeast University. All right reserved.

关键词:

Image texture Textures Mobile robots Trees (mathematics) Failure analysis Mapping

作者机构:

  • [ 1 ] [Wang, Ke]College of Electronic Information and Control Engineering,, Beijing University of Technology,, Beijing; 100124, China
  • [ 2 ] [Jia, Song-Min]College of Electronic Information and Control Engineering,, Beijing University of Technology,, Beijing; 100124, China
  • [ 3 ] [Xu, Tao]College of Electronic Information and Control Engineering,, Beijing University of Technology,, Beijing; 100124, China
  • [ 4 ] [Xu, Tao]School of Mechanical and Electrical Engineering,, He'nan Institute of Science and Technology,, Xinxiang; 453003, China
  • [ 5 ] [Li, Xiu-Zhi]College of Electronic Information and Control Engineering,, Beijing University of Technology,, Beijing; 100124, China

通讯作者信息:

  • [wang, ke]college of electronic information and control engineering,, beijing university of technology,, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Control and Decision

ISSN: 1001-0920

年份: 2015

期: 8

卷: 30

页码: 1504-1508

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:2025/3888478
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司