• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Mahmood, Tariq (Mahmood, Tariq.) | Li, Jianqiang (Li, Jianqiang.) (学者:李建强) | Saba, Tanzila (Saba, Tanzila.) | Rehman, Amjad (Rehman, Amjad.) | Ali, Saqib (Ali, Saqib.)

收录:

EI Scopus SCIE

摘要:

Energy efficiency and security are critical components of Quality of Service (QoS) and remain a challenge in WSN-assisted IoT owing to its open and resource -limited nature. Despite intensive research on WSN-IoT, only a few have achieved significant levels of energy efficiency and load balancing on clustering nodes. This study proposes a novel approach for dynamic cluster -based WSN-IoT networks to enhance the network's resilience using data fusion techniques and eliminate illogical clustering. The Mean Value and Minimum Distance Method identifies the optimal cluster heads within the network by reducing data redundancy, resulting in improved quality of service, energy optimization, and enhanced lifetime. The proposed fused deep learning -based data mining method (RNN-LSTM) mitigates the data fitting and enhances the dynamic routing and balancing load at the WSN fusion center. The novel approach splits the network into layers, assigning sensor nodes to each layer, drastically reducing latency, data transfers, and the fusion center's overhead. Distinct experiments evaluated the suggested approach's efficacy by varying the hidden layer nodes and signaling intervals. The empirical verdicts exhibit that the presented routing algorithms surpass state-of-the-art conventional routing systems in energy depletion, average latency, signaling overhead, cumulative throughput, and route heterogeneity.

关键词:

RNN-LSTM Data fusion Inclusive innovation Internet of things Multi-hop clustering Energy balanced

作者机构:

  • [ 1 ] [Mahmood, Tariq]CCIS Prince Sultan Univ, Artificial Intelligence & Data Analyt AIDA Lab, Riyadh 11586, Saudi Arabia
  • [ 2 ] [Saba, Tanzila]CCIS Prince Sultan Univ, Artificial Intelligence & Data Analyt AIDA Lab, Riyadh 11586, Saudi Arabia
  • [ 3 ] [Rehman, Amjad]CCIS Prince Sultan Univ, Artificial Intelligence & Data Analyt AIDA Lab, Riyadh 11586, Saudi Arabia
  • [ 4 ] [Mahmood, Tariq]Univ Educ, Fac Informat Sci, Vehari Campus, Vehari 61100, Pakistan
  • [ 5 ] [Li, Jianqiang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Ali, Saqib]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 7 ] [Li, Jianqiang]Beijing Engn Res Ctr IoT Software & Syst, Beijing 100124, Peoples R China

通讯作者信息:

  • [Mahmood, Tariq]CCIS Prince Sultan Univ, Artificial Intelligence & Data Analyt AIDA Lab, Riyadh 11586, Saudi Arabia;;[Mahmood, Tariq]Univ Educ, Fac Informat Sci, Vehari Campus, Vehari 61100, Pakistan

查看成果更多字段

相关关键词:

相关文章:

来源 :

JOURNAL OF NETWORK AND COMPUTER APPLICATIONS

ISSN: 1084-8045

年份: 2024

卷: 224

8 . 7 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 11

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:291/4974600
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司