• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Junrui (Liu, Junrui.) | Li, Tong (Li, Tong.) | Yang, Zhen (Yang, Zhen.) (学者:杨震) | Wu, Di (Wu, Di.) | Liu, Huan (Liu, Huan.)

收录:

EI Scopus SCIE

摘要:

Recommendation methods improve rating prediction performance by learning selection bias phenomenon -users tend to rate items they like. These methods model selection bias by calculating the propensities of ratings, but inaccurate propensity could introduce more noise, fail to model selection bias, and reduce prediction performance. We argue that learning interaction features can effectively model selection bias and improve model performance, as interaction features explain the reason of the trend. Reviews can be used to model interaction features because they have a strong intrinsic correlation with user interests and item interactions. In this study, we propose a preference- and bias -oriented fusion learning model (PBFL) that models the interaction features based on reviews and user preferences to make rating predictions. Our proposal both embeds traditional user preferences in reviews, interactions, and ratings and considers word distribution bias and review quoting to model interaction features. Six realworld datasets are used to demonstrate effectiveness and performance. PBFL achieves an average improvement of 4.46% in root -mean -square error (RMSE) and 3.86% in mean absolute error (MAE) over the best baseline.

关键词:

Recommender systems Selection bias Text mining Interaction feature Data mining

作者机构:

  • [ 1 ] [Liu, Junrui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Tong]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Yang, Zhen]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Wu, Di]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Liu, Huan]Arizona State Univ, Comp Sci & Engn, Tempe, AZ USA

通讯作者信息:

  • [Li, Tong]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

DATA & KNOWLEDGE ENGINEERING

ISSN: 0169-023X

年份: 2024

卷: 150

2 . 5 0 0

JCR@2022

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:542/4959741
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司