• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Fan, Lingling (Fan, Lingling.) | Jin, Liu (Jin, Liu.) (学者:金浏) | Zhao, Ou (Zhao, Ou.) | Li, Ping (Li, Ping.) | Liang, Jian (Liang, Jian.) | Du, Xiuli (Du, Xiuli.)

收录:

Scopus SCIE

摘要:

Reinforced concrete (RC) columns are prone to shear failure under seismic loads, particularly in the case of short columns. However, this brittle failure may have more adverse effects on large-sized columns. To address this issue, a common solution is to retrofit RC columns using fiber-reinforced polymer (FRP) laminates to improve seismic performance. The primary objective of this study is to assess the shear performance and size effect of rectangular RC columns confined using carbon fiber-reinforced polymer (CFRP). To account for the heterogeneity of concrete, a mesoscale numerical approach is developed using a random aggregate model. The investigation focuses on impacts of the axial compression ratio and CFRP volumetric ratio. Results show that the cross-sectional size has little effect on the final failure mode of the columns. However, the width of the main diagonal crack is reduced as the cross-sectional height increases. It can be observed that the size effect on the CFRP rupture hoop strain distribution is primarily manifested in the strain value rather than the shape of the distribution. The size effect is evident in the total shear strength of columns and in the CFRP shear contribution, with the effect becoming more pronounced with increasing axial compression ratio. Taking into account the influences of size on the CFRP shear contribution and shear strength of RC columns as well as the CFRP confinement effect on concrete, the calculation model of shear capacity is established based on a new proposed FRP effective strain model available for rectangular columns. The proposed model can provide a more accurate prediction on shear capacity of rectangular CFRP-confined RC columns compared with existing design codes.

关键词:

CFRP volumetric ratio Mesoscale numerical method Shear capacity Rectangular CFRP-confined RC columns Size effect Axial compression ratio

作者机构:

  • [ 1 ] [Fan, Lingling]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 2 ] [Jin, Liu]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Ping]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 4 ] [Liang, Jian]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 5 ] [Du, Xiuli]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 6 ] [Zhao, Ou]Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore 639798, Singapore

通讯作者信息:

  • 金浏

    [Jin, Liu]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF COMPOSITES FOR CONSTRUCTION

ISSN: 1090-0268

年份: 2024

期: 1

卷: 28

4 . 6 0 0

JCR@2022

被引次数:

WoS核心集被引频次: 2

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:417/4930513
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司