• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Jiaming (Liu, Jiaming.) | Tang, Xiaoya (Tang, Xiaoya.) | Liu, Haibin (Liu, Haibin.) (学者:刘海滨)

收录:

SSCI EI Scopus SCIE

摘要:

The study on forecasting demand for online car-hailing holds substantial implications for both online car-hailing platforms and government agencies responsible for traffic management. This research proposes an enhanced Empirical Mode Decomposition Long-short Term Memory Neural Network (EMD-LSTM) model. EMD technique reduces noise and extracts stable intrinsic mode functions (IMF) from the original time series. Genetic algorithm is deployed to improve the K-Means clustering for determining optimal clusters. These sub time series serve as input for the prediction model, with combined results giving final predictions. Experimental data from Didi includes Haikou's car-hailing orders from May to October 2017 and Beijing's from January to May 2020. Results show improved EMD-LSTM reduces instability and captures characteristics better. Compared to unmodified EMD-LSTM, RMSE decreases by 3.50%, 6.81%, and 6.81% for the three datasets, and by 30.97%, 20%, and 9.24% respectively compared to single LSTM model.

关键词:

EMD online car-hailing demand forecasting LSTM improved K-Means

作者机构:

  • [ 1 ] [Liu, Jiaming]Beijing Technol & Business Univ, Sch Int Econ & Management, Beijing, Peoples R China
  • [ 2 ] [Tang, Xiaoya]Beijing Univ Chem Technol, Coll Econ & Management, Beijing, Peoples R China
  • [ 3 ] [Liu, Haibin]Beijing Univ Technol, Fac Mat & Mfg, Beijing 100124, Peoples R China

通讯作者信息:

  • 刘海滨

    [Liu, Haibin]Beijing Univ Technol, Fac Mat & Mfg, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

TRANSPORTATION LETTERS-THE INTERNATIONAL JOURNAL OF TRANSPORTATION RESEARCH

ISSN: 1942-7867

年份: 2024

2 . 8 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:291/5022842
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司