• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Meishan (Liu, Meishan.) | Jian, Meng (Jian, Meng.) | Bai, Yulong (Bai, Yulong.) | Wu, Jiancan (Wu, Jiancan.) | Wu, Lifang (Wu, Lifang.) (学者:毋立芳)

收录:

EI Scopus SCIE

摘要:

Previous recommendation models build interest embeddings heavily relying on the observed interactions and optimize the embeddings with a contrast between the interactions and randomly sampled negative instances. To our knowledge, the negative interest signals remain unexplored in interest encoding, which merely serves losses for backpropagation. Besides, the sparse undifferentiated interactions inherently bring implicit bias in revealing users' interests, leading to suboptimal interest prediction. The negative interest signals would be a piece of promising evidence to support detailed interest modeling. In this work, we propose a perturbed graph contrastive learning with negative propagation (PCNP) for recommendation, which introduces negative interest to assist interest modeling in a contrastive learning (CL) architecture. An auxiliary channel of negative interest learning generates a contrastive graph by negative sampling and propagates complementary embeddings of users and items to encode negative signals. The proposed PCNP contrasts positive and negative embeddings to promote interest modeling for recommendation. Extensive experiments demonstrate the capability of PCNP using two-level CL to alleviate interaction sparsity and bias issues for recommendation.

关键词:

graph convolution Contrastive learning user interest recommender system

作者机构:

  • [ 1 ] [Liu, Meishan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Jian, Meng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Bai, Yulong]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Wu, Lifang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Wu, Jiancan]Univ Sci & Technol China, Dept Elect Engn & Informat Sci, Hefei 230026, Peoples R China

通讯作者信息:

  • 毋立芳

    [Wu, Lifang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

ISSN: 2329-924X

年份: 2024

期: 3

卷: 11

页码: 4255-4266

5 . 0 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:675/4960967
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司