• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chang, Mengmeng (Chang, Mengmeng.) | Ding, Zhiming (Ding, Zhiming.) | Zhao, Zilin (Zhao, Zilin.) | Cai, Zhi (Cai, Zhi.)

收录:

EI Scopus SCIE

摘要:

Traffic patterns in the spatiotemporal network are affected by temporal dynamics and spatial correlations. The network flows have different strengths interacting at various implicit layers, and this dynamic process needs to be further explored. Predicting future traffic based on historical data from transportation IoT has been well studied, however, most of the works focus on traffic dynamics in the homogeneous spatial or temporal structure. When the spatiotemporal graph structure turns complex, it becomes a challenge to capture the deep traffic patterns on it. In this paper, a heterogeneous modular flows graph is constructed to characterize the implied spatiotemporal correlations within the traffic data. Then, we proposed a Multilayer Graph Skip Temporal Convolution Network (MGSTCN) which extracts skip aggregated representations of node status to the modular flows graph. And an extended random walk on diverse modular graphs is used to learn the spatial dependencies. The experiments based on real traffic networks confirmed that the MGSTCN has a better performance compared to the spatiotemporal homogeneous methods.

关键词:

traffic prediction graph convolution Multilayer graph heterogeneous links

作者机构:

  • [ 1 ] [Chang, Mengmeng]Henan Normal Univ, Coll Comp & Informat Engn, Xinxiang 453007, Peoples R China
  • [ 2 ] [Chang, Mengmeng]Henan Engn Lab Intelligence Business & Internet Th, Xinxiang 453007, Peoples R China
  • [ 3 ] [Ding, Zhiming]Chinese Acad Sci, Inst Software, Beijing 100190, Peoples R China
  • [ 4 ] [Zhao, Zilin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Cai, Zhi]Beijing Univ Technol, Coll Comp Sci, Beijing 100124, Peoples R China

通讯作者信息:

  • [Ding, Zhiming]Chinese Acad Sci, Inst Software, Beijing 100190, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

ISSN: 1524-9050

年份: 2024

期: 7

卷: 25

页码: 7805-7817

8 . 5 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:650/4934490
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司