• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zheng, Yihao (Zheng, Yihao.) | Luo, Kunming (Luo, Kunming.) | Liu, Shuaicheng (Liu, Shuaicheng.) | Li, Zun (Li, Zun.) | Xiang, Ye (Xiang, Ye.) | Wu, Lifang (Wu, Lifang.) (学者:毋立芳) | Zeng, Bing (Zeng, Bing.) | Chen, Chang Wen (Chen, Chang Wen.)

收录:

EI Scopus SCIE

摘要:

Motions in videos are typically a mixture of local dynamic object motions and global camera motion, which are inconsistent in some cases, and even interfere with each other, causing difficulties in various downstream applications, such as video stabilization that requires the global motion, and action recognition that consumes local motions. Therefore, it is crucial to estimate them separately. Existing methods separate two motions from the mixed motion fields, such as optical flow. However, the quality of mixed motion determines the higher bounds of the performance. In this work, we propose a framework, GLOCAL, to directly estimate global and local motions simultaneously from adjacent frames in a self-supervised manner. Our GLOCAL consists of a Global Motion Estimation (GME) module and a Local Motion Estimation (LME) module. The GME module involves a mixed motion estimation backbone, an implicit bottleneck structure for feature dimension reduction, and an explicit bottleneck for global motion recovery based on the global motion bases with foreground mask under the training guidance of proposed global reconstruction loss. An attention U-Net is adopted for LME which produces local motions while excluding motion of irrelevant regions under the guidance of proposed local reconstruction loss. Our method can achieve better performance than the existing methods on the homography estimation dataset DHE and the action recognition dataset NCAA and UCF-101.

关键词:

motion estimation motion pattern Video understanding optical flow

作者机构:

  • [ 1 ] [Zheng, Yihao]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Zun]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Xiang, Ye]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Wu, Lifang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Luo, Kunming]Megvii Technol, Beijing 100190, Peoples R China
  • [ 6 ] [Liu, Shuaicheng]Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
  • [ 7 ] [Zeng, Bing]Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
  • [ 8 ] [Chen, Chang Wen]Hong Kong Polytech Univ, Dept Comp, Hong Kong 999077, Peoples R China

通讯作者信息:

  • 毋立芳

    [Wu, Lifang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

PATTERN RECOGNITION LETTERS

ISSN: 0167-8655

年份: 2024

卷: 178

页码: 91-97

5 . 1 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:568/4962275
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司