• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Lin, Yongze (Lin, Yongze.) | Bi, Jing (Bi, Jing.) | Yuan, Haitao (Yuan, Haitao.) | Wang, Gongming (Wang, Gongming.) | Zhou, Mengchu (Zhou, Mengchu.)

收录:

Scopus SCIE

摘要:

In many fields, spatiotemporal prediction is gaining more and more attention, e.g., air pollution, weather forecasting, and traffic forecasting. Water quality prediction is a spatiotemporal prediction task. However, there are several challenges in water quality prediction: 1) Water quality time series has a complex nonlinear relationship, making it difficult to predict; 2) Water quality sensors are distributed on the river networks and have a strong spatial dependence on water quality prediction; and 3) Poor long-term forecast accuracy. To solve these problems, this work proposes a spatiotemporal prediction model called a Fusion Spatio-temporal Graph Convolution Neural network (FSGCN). First, This work uses a temporal attention mechanism to solve the nonlinear problem of water quality time series. Second, It adopts a graph convolution to extract spatial dependencies of river networks, and the fusion of spatiotemporal can more easily capture spatiotemporal features. Third, it adopts a temporal convolution residual mechanism, improving long-term series prediction accuracy. This work adopts two real-world datasets to evaluate the proposed FSGCN, and experiments demonstrate that FSGCN outperforms several state-of-the-art methods in terms of prediction accuracy.

关键词:

river network graph convolution neural network spatiotemporal fusion temporal convolution residual Water quality prediction

作者机构:

  • [ 1 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Lin, Yongze]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Bi, Jing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Gongming]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Yuan, Haitao]Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
  • [ 6 ] [Zhou, Mengchu]New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA
  • [ 7 ] [Zhou, Mengchu]King Abdulaziz Univ, Ctr Res Excellence Renewable Energy & Power Syst, Jeddah 21589, Saudi Arabia

通讯作者信息:

  • [Bi, Jing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

ISSN: 1545-5955

年份: 2024

5 . 6 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 19

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:358/4969720
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司