收录:
摘要:
Single-atom catalysts show excellent catalytic performance because of their coordination environments and electronic configurations. However, controllable regulation of single-atom permutations still faces challenges. Herein, we demonstrate that a polarization electric field regulates single atom permutations and forms periodic one-dimensional Au single-atom arrays on ferroelectric Bi4Ti3O12 nanosheets. The Au single-atom arrays greatly lower the Gibbs free energy for CO2 conversion via Au-O=C=O-Au dual-site adsorption compared to that for Au-O=C=O single-site adsorption on Au isolated single atoms. Additionally, the Au single-atom arrays suppress the depolarization of Bi4Ti3O12, so it maintains a stronger driving force for separation and transfer of photogenerated charges. Thus, Bi4Ti3O12 with Au single-atom arrays exhibit an efficient CO production rate of 34.15 mu molg(-1)h(-1), similar to 18 times higher than that of pristine Bi4Ti3O12. More importantly, the polarization electric field proves to be a general tactic for the syntheses of one-dimensional Pt, Ag, Fe, Co and Ni single-atom arrays on the Bi4Ti3O12 surface.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
NATURE COMMUNICATIONS
年份: 2024
期: 1
卷: 15
1 6 . 6 0 0
JCR@2022
归属院系: