• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Faraji, Amin (Faraji, Amin.) | Sadrossadat, Sayed Alireza (Sadrossadat, Sayed Alireza.) | Jin, Jing (Jin, Jing.) | Na, Weicong (Na, Weicong.) | Feng, Feng (Feng, Feng.) | Zhang, Qi-Jun (Zhang, Qi-Jun.)

收录:

EI Scopus SCIE

摘要:

This paper proposes a new hybrid structure and microwave modeling method that combines polynomial regression with batch-normalized deep feedforward neural network (BN-DFN) to be used in high-dimensional microwave circuit modeling. Utilizing the proposed BN-DFN method results in a remarkably faster training procedure compared to the conventional DFN. In addition, the superiority of the BN-DFN method over DFN in terms of accuracy prepares this opportunity to perform high-dimensional microwave modeling using fewer training data in comparison with the modeling with conventional DFN. The results show that a data reduction of about 40-80% can be achieved for microwave applications used in this paper using the proposed method. Also, in this paper, a hybrid polynomial regression BN-DFN (HPBN-DFN) is proposed to further improve the accuracy of the proposed BN-DFN method. The proposed HPBN-DFN method fine-tunes the predicted values of the BN-DFN by passing them through a polynomial regression stage for increasing accuracy. The proposed methods are verified through two high-dimensional parameter-extraction modeling examples of microwave filters.

关键词:

polynomial regression Couplings Batch normalization high dimension deep neural networks parameter extraction deep learning microwave modeling

作者机构:

  • [ 1 ] [Faraji, Amin]Yazd Univ, Dept Comp Engn, Yazd 8915818411, Iran
  • [ 2 ] [Sadrossadat, Sayed Alireza]Yazd Univ, Dept Comp Engn, Yazd 8915818411, Iran
  • [ 3 ] [Jin, Jing]Cent China Normal Univ, Coll Phys Sci & Technol, Wuhan 430079, Peoples R China
  • [ 4 ] [Na, Weicong]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Feng, Feng]Tianjin Univ, Sch Microelect, Tianjin 300072, Peoples R China
  • [ 6 ] [Zhang, Qi-Jun]Carleton Univ, Dept Elect, Ottawa, ON K1S 5B6, Canada

通讯作者信息:

  • [Jin, Jing]Cent China Normal Univ, Coll Phys Sci & Technol, Wuhan 430079, Peoples R China

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS

ISSN: 1549-8328

年份: 2024

期: 3

卷: 71

页码: 1245-1258

5 . 1 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:665/4949516
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司