• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qin, Han (Qin, Han.) | Zhang, Liping (Zhang, Liping.) | Li, Xiaodan (Li, Xiaodan.) | Xu, Zhifei (Xu, Zhifei.) | Zhang, Jie (Zhang, Jie.) | Wang, Shengcai (Wang, Shengcai.) | Zheng, Li (Zheng, Li.) | Ji, Tingting (Ji, Tingting.) | Mei, Lin (Mei, Lin.) | Kong, Yaru (Kong, Yaru.) | Jia, Xinbei (Jia, Xinbei.) | Lei, Yi (Lei, Yi.) | Qi, Yuwei (Qi, Yuwei.) | Ji, Jie (Ji, Jie.) | Ni, Xin (Ni, Xin.) | Wang, Qing (Wang, Qing.) | Tai, Jun (Tai, Jun.)

收录:

Scopus SCIE

摘要:

Objective The objective of this study was to investigate the effectiveness of a machine learning algorithm in diagnosing OSA in children based on clinical features that can be obtained in nonnocturnal and nonmedical environments.Patients and methods This study was conducted at Beijing Children's Hospital from April 2018 to October 2019. The participants in this study were 2464 children aged 3-18 suspected of having OSA who underwent clinical data collection and polysomnography(PSG). Participants' data were randomly divided into a training set and a testing set at a ratio of 8:2. The elastic net algorithm was used for feature selection to simplify the model. Stratified 10-fold cross-validation was repeated five times to ensure the robustness of the results.Results Feature selection using Elastic Net resulted in 47 features for AHI >= 5 and 31 features for AHI >= 10 being retained. The machine learning model using these selected features achieved an average AUC of 0.73 for AHI >= 5 and 0.78 for AHI >= 10 when tested externally, outperforming models based on PSG questionnaire features. Linear Discriminant Analysis using the selected features identified OSA with a sensitivity of 44% and specificity of 90%, providing a feasible clinical alternative to PSG for stratifying OSA severity.Conclusions This study shows that a machine learning model based on children's clinical features effectively identifies OSA in children. Establishing a machine learning screening model based on the clinical features of the target population may be a feasible clinical alternative to nocturnal OSA sleep diagnosis.

关键词:

children obstructive sleep apnea artificial intelligence machine learning computer-aided diagnosis

作者机构:

  • [ 1 ] [Qin, Han]Chinese Acad Med Sci & Peking Union Med Coll, Childrens Hosp Capital Inst Pediat, Capital Inst Pediat, Dept Child Hlth Care, Beijing, Peoples R China
  • [ 2 ] [Kong, Yaru]Chinese Acad Med Sci & Peking Union Med Coll, Childrens Hosp Capital Inst Pediat, Capital Inst Pediat, Dept Child Hlth Care, Beijing, Peoples R China
  • [ 3 ] [Jia, Xinbei]Chinese Acad Med Sci & Peking Union Med Coll, Childrens Hosp Capital Inst Pediat, Capital Inst Pediat, Dept Child Hlth Care, Beijing, Peoples R China
  • [ 4 ] [Zhang, Liping]Cross Strait Tsinghua Res Inst, Pharmacovigilance Res Ctr Informat Technol & Data, Xiamen, Peoples R China
  • [ 5 ] [Wang, Qing]Cross Strait Tsinghua Res Inst, Pharmacovigilance Res Ctr Informat Technol & Data, Xiamen, Peoples R China
  • [ 6 ] [Li, Xiaodan]Capital Med Univ, Beijing Childrens Hosp, Natl Ctr Childrens Hlth, Dept Otolaryngol Head & Neck Surg, Beijing, Peoples R China
  • [ 7 ] [Zhang, Jie]Capital Med Univ, Beijing Childrens Hosp, Natl Ctr Childrens Hlth, Dept Otolaryngol Head & Neck Surg, Beijing, Peoples R China
  • [ 8 ] [Wang, Shengcai]Capital Med Univ, Beijing Childrens Hosp, Natl Ctr Childrens Hlth, Dept Otolaryngol Head & Neck Surg, Beijing, Peoples R China
  • [ 9 ] [Zheng, Li]Capital Med Univ, Beijing Childrens Hosp, Natl Ctr Childrens Hlth, Dept Otolaryngol Head & Neck Surg, Beijing, Peoples R China
  • [ 10 ] [Ji, Tingting]Capital Med Univ, Beijing Childrens Hosp, Natl Ctr Childrens Hlth, Dept Otolaryngol Head & Neck Surg, Beijing, Peoples R China
  • [ 11 ] [Mei, Lin]Capital Med Univ, Beijing Childrens Hosp, Natl Ctr Childrens Hlth, Dept Otolaryngol Head & Neck Surg, Beijing, Peoples R China
  • [ 12 ] [Ji, Jie]Capital Med Univ, Beijing Childrens Hosp, Natl Ctr Childrens Hlth, Dept Otolaryngol Head & Neck Surg, Beijing, Peoples R China
  • [ 13 ] [Ni, Xin]Capital Med Univ, Beijing Childrens Hosp, Natl Ctr Childrens Hlth, Dept Otolaryngol Head & Neck Surg, Beijing, Peoples R China
  • [ 14 ] [Xu, Zhifei]Capital Med Univ, Beijing Childrens Hosp, Natl Ctr Childrens Hlth, Resp Dept, Beijing, Peoples R China
  • [ 15 ] [Lei, Yi]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 16 ] [Qi, Yuwei]Childrens Hosp, Dept Otolaryngol Head & Neck Surg, Capital Inst Pediat, Beijing, Peoples R China
  • [ 17 ] [Tai, Jun]Childrens Hosp, Dept Otolaryngol Head & Neck Surg, Capital Inst Pediat, Beijing, Peoples R China
  • [ 18 ] [Wang, Qing]Tsinghua Univ, Dept Automat, BNRIST, Beijing, Peoples R China

通讯作者信息:

  • [Wang, Qing]Cross Strait Tsinghua Res Inst, Pharmacovigilance Res Ctr Informat Technol & Data, Xiamen, Peoples R China;;[Ni, Xin]Capital Med Univ, Beijing Childrens Hosp, Natl Ctr Childrens Hlth, Dept Otolaryngol Head & Neck Surg, Beijing, Peoples R China;;[Tai, Jun]Childrens Hosp, Dept Otolaryngol Head & Neck Surg, Capital Inst Pediat, Beijing, Peoples R China;;[Wang, Qing]Tsinghua Univ, Dept Automat, BNRIST, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

FRONTIERS IN PEDIATRICS

ISSN: 2296-2360

年份: 2024

卷: 12

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:343/4971666
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司