• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Xianrun (Chen, Xianrun.) | Xu, Dachuan (Xu, Dachuan.) | Xu, Yicheng (Xu, Yicheng.) | Zhang, Yong (Zhang, Yong.)

收录:

EI Scopus

摘要:

Clustering is one of the most fundamental tools in artificial intelligence, machine learning, and data mining. In this paper, we follow one of the recent mainstream topics of clustering, Sum of Radii (SoR), which naturally arises as a balance between the folklore k-center and k-median. SoR aims to determine a set of k balls, each centered at a point in a given dataset, such that their union covers the entire dataset while minimizing the sum of radii of the k balls. We propose a general technical framework to overcome the challenge posed by varying radii in SoR, which yields fixed-parameter tractable (fpt) algorithms with respect to k (i.e., whose running time is f(k)ploy(n) for some f). Our framework is versatile and obtains fpt approximation algorithms with constant approximation ratios for SoR as well as its variants in general metrics, such as Fair SoR and Matroid SoR, which significantly improve the previous results. Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

关键词:

Data mining Artificial intelligence Parameter estimation Approximation algorithms Clustering algorithms

作者机构:

  • [ 1 ] [Chen, Xianrun]Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
  • [ 2 ] [Chen, Xianrun]University of Chinese Academy of Sciences, Beijing, China
  • [ 3 ] [Xu, Dachuan]Beijing University of Technology, Beijing, China
  • [ 4 ] [Xu, Yicheng]Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
  • [ 5 ] [Xu, Yicheng]University of Chinese Academy of Sciences, Beijing, China
  • [ 6 ] [Zhang, Yong]Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
  • [ 7 ] [Zhang, Yong]University of Chinese Academy of Sciences, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 2159-5399

年份: 2024

期: 18

卷: 38

页码: 20666-20673

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:426/4965432
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司