• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jia, Tongyao (Jia, Tongyao.) | Li, Jiafeng (Li, Jiafeng.) | Zhuo, Li (Zhuo, Li.) | Yu, Tianjian (Yu, Tianjian.)

收录:

EI Scopus SCIE

摘要:

Captured outdoor scene images are easily affected by haze. Most image dehazing methods have limited generalization capabilities for real-world hazy images owing to the complexities of real-world environments and domain gaps in the training datasets. This article proposes a semi-supervised single-image dehazing network based on disentangled meta-knowledge. The symmetric and heterogeneous design of the disentangled network is conducive to the separation of the content and mask features of hazy images and these features are used as meta-knowledge to guide feature fusion in the dehazing network. Moreover, functions describing constant-color and disentangled-reconstruction-checking losses are designed to ensure the subjective qualities of the generated dehazed images. The results of extensive experiments conducted on synthetic datasets and real-world images indicate that the proposed algorithm outperforms state-of-the-art single-image dehazing algorithms. In addition, the algorithm effectively improves the performance of object-detection tasks.

关键词:

Disentangled representations Image reconstruction semi-supervised learning Training meta-learning Synthetic data Prediction algorithms single-image dehazing Atmospheric modeling Metalearning Task analysis

作者机构:

  • [ 1 ] [Jia, Tongyao]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing, Peoples R China
  • [ 2 ] [Li, Jiafeng]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing, Peoples R China
  • [ 3 ] [Zhuo, Li]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing, Peoples R China
  • [ 4 ] [Yu, Tianjian]Cent South Univ, Sch Traff & Transportat Engn, Changsha 410017, Hunan, Peoples R China

通讯作者信息:

  • [Li, Jiafeng]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing, Peoples R China;;[Zhuo, Li]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing, Peoples R China;;

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON MULTIMEDIA

ISSN: 1520-9210

年份: 2024

卷: 26

页码: 2634-2647

7 . 3 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 13

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:548/4955877
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司