• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Li, Fei (Li, Fei.) | Yang, Cuili (Yang, Cuili.) | Li, Wenjing (Li, Wenjing.) | Gu, Ke (Gu, Ke.) (学者:顾锞)

收录:

EI Scopus SCIE CSCD

摘要:

Radial basis function neural network (RBFNN) is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a distance concentration immune algorithm (DCIA) is proposed to self-organize the structure and parameters of the RBFNN in this paper. First, the distance concentration algorithm, which increases the diversity of antibodies, is used to find the global optimal solution. Secondly, the information processing strength (IPS) algorithm is used to avoid the instability that is caused by the hidden layer with neurons split or deleted randomly. However, to improve the forecasting accuracy and reduce the computation time, a sample with the most frequent occurrence of maximum error is proposed to regulate the parameters of the new neuron. In addition, the convergence proof of a self-organizing RBF neural network based on distance concentration immune algorithm (DCIA-SORBFNN) is applied to guarantee the feasibility of algorithm. Finally, several nonlinear functions are used to validate the effectiveness of the algorithm. Experimental results show that the proposed DCIA-SORBFNN has achieved better nonlinear approximation ability than that of the art relevant competitors.

关键词:

Distance concentration immune algorithm (DCIA) radial basis function neural network (RBFNN) information processing strength (IPS)

作者机构:

  • [ 1 ] [Qiao, Junfei]Beijing Univ Technol, Beijing 100083, Peoples R China
  • [ 2 ] [Li, Fei]Beijing Univ Technol, Beijing 100083, Peoples R China
  • [ 3 ] [Yang, Cuili]Beijing Univ Technol, Beijing 100083, Peoples R China
  • [ 4 ] [Li, Wenjing]Beijing Univ Technol, Beijing 100083, Peoples R China
  • [ 5 ] [Gu, Ke]Beijing Univ Technol, Beijing 100083, Peoples R China

通讯作者信息:

  • [Li, Fei]Beijing Univ Technol, Beijing 100083, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE-CAA JOURNAL OF AUTOMATICA SINICA

ISSN: 2329-9266

年份: 2020

期: 1

卷: 7

页码: 276-291

1 1 . 8 0 0

JCR@2022

被引次数:

WoS核心集被引频次: 22

SCOPUS被引频次: 26

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:474/4965908
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司