• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Shize (Wang, Shize.)

收录:

EI Scopus

摘要:

Recent advancements in low-light image enhancement (LLIE) through deep learning have been significant. However, these methods often struggle with effectively handling noise in dark regions, hindering the recovery of high-quality texture details obscured by noise. Moreover, existing approaches typically treat the entire image as a uniform entity, neglecting the semantic nuances of distinct regions. This oversight may cause a network to deviate from an area's original color without semantic priors. In response to these challenges, we introduce the Semantic-Guided Denoising Diffusion Probabilistic Model (SG-DDPM). Leveraging a diffusion model for LLIE, our approach employs a sequence of denoising refinement processes to restore realistic details in dark areas. We have optimized the inference process of the diffusion model to enhance its speed. Additionally, we integrate the Segment Anything Model (SAM) to extract semantic information from low-light images, guiding the diffusion model through conditional guidance. Experimental results demonstrate that SG-DDPM exhibits competitive performance across three image enhancement datasets, showcasing improvements in quantitative metrics and visual quality. © 2024 IEEE.

关键词:

Computer vision Diffusion Semantic Segmentation Semantics Image enhancement Textures Deep learning

作者机构:

  • [ 1 ] [Wang, Shize]Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2024

页码: 111-114

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:343/4973711
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司