• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Gong, Luyang (Gong, Luyang.)

收录:

EI Scopus

摘要:

As business rapidly evolves, the types of business services become increasingly complex. The conventional approach of manually configuring rules for maintenance and quality assurance systems is gradually proving inadequate, and there is a growing demand for intelligent operations (AIOps) and quality assurance. This paper proposes an anomaly detection algorithm by ensemble various algorithms. Originating from operation and maintenance scenarios, this algorithm is gradually applied to business scenarios. The process involves streaming data collection, data preprocessing, anomaly detection models, and monitoring alerts, thereby realizing multidimensional anomaly detection in both operational and business scenarios. In comparison to traditional monitoring platforms, the proposed algorithm saves manpower and exhibits higher accuracy. Furthermore, when compared to traditional machine learning algorithms, it saves resources and provides faster response times. © 2024 IEEE.

关键词:

Learning algorithms Anomaly detection Machine learning Quality assurance Data acquisition

作者机构:

  • [ 1 ] [Gong, Luyang]Beijing University of Technology, School of Software Engineering, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ISSN: 2689-6621

年份: 2024

页码: 1424-1430

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:359/4914114
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司