• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Honggui (Han, Honggui.) | Xu, Yumeng (Xu, Yumeng.) | Liu, Zheng (Liu, Zheng.) | Sun, Haoyuan (Sun, Haoyuan.) | Qiao, Junfei (Qiao, Junfei.)

收录:

EI Scopus SCIE

摘要:

The increasing complexity and scale of the wastewater treatment process (WWTP) demand more and more safety and stability. However, due to the unavoidable existence of external disturbance, sludge bulking is commonly encountered, which can result in risks for the efficient and stable operation of WWTP. To address this problem, a knowledge-data-driven robust fault-tolerant control (KDD-RFTC) is proposed in this article. First, a robustness evaluation strategy (RES) is constructed to extract the response and fluctuation characteristics of KDD-RFTC. Then, the antijamming ability of KDD-RFTC can be obtained in the presence of sludge bulking. Second, an adaptive knowledge transfer strategy (AKTS), based on RFTC, is designed to suppress the sludge bulking with the knowledge from the results of RES and the process data. Then, the proposed KDD-RFTC can readjust the manipulated variable to ensure a safe and stable operation. Third, the stability proof of KDD-RFTC is verified by the Lyapunov theory. Then, the successful application of KDD-RFTC can be guaranteed. Finally, KDD-RFTC is employed in the benchmark simulation model no. 1 (BSM1) to verify its merits. The experimental results illustrate that the proposed KDD-RFTC method can obtain excellent control performance and inhibit sludge bulking.

关键词:

knowledge-data-driven robust fault-tolerant control (KDD-RFTC) robustness evaluation strategy (RES) Adaptive knowledge transfer strategy (AKTS) stability analysis sludge bulking

作者机构:

  • [ 1 ] [Han, Honggui]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing Artificial Intelligence Inst, Minist Educ,Engn Res Ctr Digital Community,Fac In, Beijing 100124, Peoples R China
  • [ 2 ] [Xu, Yumeng]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing Artificial Intelligence Inst, Minist Educ,Engn Res Ctr Digital Community,Fac In, Beijing 100124, Peoples R China
  • [ 3 ] [Liu, Zheng]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing Artificial Intelligence Inst, Minist Educ,Engn Res Ctr Digital Community,Fac In, Beijing 100124, Peoples R China
  • [ 4 ] [Sun, Haoyuan]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing Artificial Intelligence Inst, Minist Educ,Engn Res Ctr Digital Community,Fac In, Beijing 100124, Peoples R China
  • [ 5 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing Artificial Intelligence Inst, Minist Educ,Engn Res Ctr Digital Community,Fac In, Beijing 100124, Peoples R China
  • [ 6 ] [Han, Honggui]Beijing Univ Technol, Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 7 ] [Xu, Yumeng]Beijing Univ Technol, Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 8 ] [Liu, Zheng]Beijing Univ Technol, Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 9 ] [Sun, Haoyuan]Beijing Univ Technol, Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 10 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China

通讯作者信息:

  • [Han, Honggui]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing Artificial Intelligence Inst, Minist Educ,Engn Res Ctr Digital Community,Fac In, Beijing 100124, Peoples R China;;[Han, Honggui]Beijing Univ Technol, Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

ISSN: 1551-3203

年份: 2024

期: 8

卷: 20

页码: 10280-10291

1 2 . 3 0 0

JCR@2022

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:312/4971292
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司