• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Honggui (Han, Honggui.) | Liu, Yucheng (Liu, Yucheng.) | Hou, Ying (Hou, Ying.) | Qiao, Junfei (Qiao, Junfei.)

收录:

EI Scopus SCIE

摘要:

For the data-driven multimodal multiobjective optimization problems (MMOPs), the inevitable uncertainties will lead to distortion of multiple peak landscapes, thus causing slow convergence in complex landscapes. To solve this problem, a robust multimodal multiobjective particle swarm optimization (RMMPSO) is designed to alleviate slow convergence. There are three novelties in RMMPSO. First, a perturbation observer is proposed to detect perturbation in the fixed point of variance to evaluate the influences of disturbed recording position on convergence. Second, an adaptive adjustment mechanism, based on the perturbation observer, is designed to obtain reasonable search ranges and suppress the abnormal changes in convergence, so as to improve convergence performance. Third, a Lipschitz-based exploitation strategy is designed to search for reliable solutions, which reduces the optimal offset caused by uncertainties. Finally, the effectiveness of RMMPSO is demonstrated in terms of multiobjective multimodal benchmark problems with uncertain components and wastewater treatment simulation platform. The results of experiments demonstrate the superiority of RMMPSO in solving data-driven MMOPs compared to state-of-the-art multimodal multiobjective algorithms.

关键词:

Recording Particle swarm optimization multimodal multiobjective optimization algorithm Observers particle swarm optimization (PSO) Perturbation methods robust Optimization Uncertainty Data-driven Convergence

作者机构:

  • [ 1 ] [Han, Honggui]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Engn Res Ctr Digital Community,Minist Educ,Beijing, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Yucheng]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Engn Res Ctr Digital Community,Minist Educ,Beijing, Beijing 100124, Peoples R China
  • [ 3 ] [Hou, Ying]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Engn Res Ctr Digital Community,Minist Educ,Beijing, Beijing 100124, Peoples R China
  • [ 4 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Engn Res Ctr Digital Community,Minist Educ,Beijing, Beijing 100124, Peoples R China
  • [ 5 ] [Han, Honggui]Beijing Univ Technol, Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 6 ] [Liu, Yucheng]Beijing Univ Technol, Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 7 ] [Hou, Ying]Beijing Univ Technol, Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 8 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China

通讯作者信息:

  • [Han, Honggui]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Engn Res Ctr Digital Community,Minist Educ,Beijing, Beijing 100124, Peoples R China;;[Han, Honggui]Beijing Univ Technol, Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS

ISSN: 2168-2216

年份: 2024

期: 5

卷: 54

页码: 3231-3243

8 . 7 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:554/4959875
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司