• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xin, Peng (Xin, Peng.) | Wang, Ding (Wang, Ding.) (学者:王鼎) | Liu, Ao (Liu, Ao.) | Qiao, Junfei (Qiao, Junfei.)

收录:

EI Scopus SCIE

摘要:

In practical industrial processes, the receding optimization solution of nonlinear model predictive control (NMPC) is always a very knotty problem. Based on adaptive dynamic programming, the accelerated value iteration predictive control (AVI-PC) algorithm is developed in this paper. Integrating iteration learning with the receding horizon mechanism of NMPC, a novel receding optimization solution pattern is exploited to resolve the optimal control law in each prediction horizon. Besides, the basic architecture and the specific form of the AVI-PC algorithm are demonstrated, including the relationship among the iterative learning process, the prediction process, and the control process. On this basis, the convergence and admissibility conditions are established, and the relevant properties are comprehensively analyzed when the accelerated factor satisfies the established conditions. Furthermore, the accelerated value iterative function is approximated through the single critic network constructed by utilizing the multiple linear regression method. Finally, the plentiful simulation experiments are conducted from various perspectives to verify the effectiveness and progressiveness of the AVI-PC algorithm.

关键词:

Accelerated mechanism Adaptive critic designs Nonlinear model predictive control Value iteration Neural networks

作者机构:

  • [ 1 ] [Wang, Ding]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Ding]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Ding]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Ding]Beijing Univ Technol, Beijing Lab Smart Environm Protect, Beijing 100124, Peoples R China

通讯作者信息:

  • [Wang, Ding]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;

查看成果更多字段

相关关键词:

来源 :

NEURAL NETWORKS

ISSN: 0893-6080

年份: 2024

卷: 176

7 . 8 0 0

JCR@2022

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:394/4969482
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司