• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Menghua (Li, Menghua.) | Wang, Ding (Wang, Ding.) (学者:王鼎) | Ren, Jin (Ren, Jin.) | Qiao, Junfei (Qiao, Junfei.)

收录:

EI Scopus SCIE

摘要:

This paper investigates the optimal tracking issue for continuous -time (CT) nonlinear asymmetric constrained zero -sum games (ZSGs) by exploiting the neural critic technique. Initially, an improved algorithm is constructed to tackle the tracking control problem of nonlinear CT multiplayer ZSGs. Also, we give a novel nonquadratic function to settle the asymmetric constraints. One thing worth noting is that the method used in this paper to solve asymmetric constraints eliminates the strict restriction on the control matrix compared to the previous ones. Further, the optimal controls, the worst disturbances, and the tracking Hamilton-Jacobi-Isaacs equation are derived. Next, a single critic neural network is built to estimate the optimal cost function, thus obtaining the approximations of the optimal controls and the worst disturbances. The critic network weight is updated by the normalized steepest descent algorithm. Additionally, based on the Lyapunov method, the stability of the tracking error and the weight estimation error of the critic network is analyzed. In the end, two examples are offered to validate the theoretical results.

关键词:

Optimal tracking control Multiplayer zero-sum games Asymmetric input constraints Neural critic technique Adaptive dynamic programming

作者机构:

  • [ 1 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
  • [ 3 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China
  • [ 4 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Lab Smart Environm Protect, Beijing 100124, Peoples R China

通讯作者信息:

  • [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;

查看成果更多字段

相关关键词:

来源 :

NEURAL NETWORKS

ISSN: 0893-6080

年份: 2024

卷: 177

7 . 8 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:407/4965612
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司