• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Mu, Junsheng (Mu, Junsheng.) | Kadoch, Michel (Kadoch, Michel.) | Yuan, Tongtong (Yuan, Tongtong.) | Lv, Wenzhe (Lv, Wenzhe.) | Liu, Qiang (Liu, Qiang.) | Li, Bohan (Li, Bohan.)

收录:

EI Scopus SCIE

摘要:

Federated learning (FL) enables collaborative training of machine learning models across distributed medical data sources without compromising privacy. However, applying FL to medical image analysis presents challenges like high communication overhead and data heterogeneity. This paper proposes novel FL techniques using explainable artificial intelligence (XAI) for efficient, accurate, and trustworthy analysis. A heterogeneity-aware causal learning approach selectively sparsifies model weights based on their causal contributions, significantly reducing communication requirements while retaining performance and improving interpretability. Furthermore, blockchain provides decentralized quality assessment of client datasets. The assessment scores adjust aggregation weights so higher-quality data has more influence during training, improving model generalization. Comprehensive experiments show our XAI-integrated FL framework enhances efficiency, accuracy and interpretability. The causal learning method decreases communication overhead while maintaining segmentation accuracy. The blockchain-based data valuation mitigates issues from low-quality local datasets. Our framework provides essential model explanations and trust mechanisms, making FL viable for clinical adoption in medical image analysis.

关键词:

medical image analy- sis Federated learning knowledge valuation blockchain

作者机构:

  • [ 1 ] [Mu, Junsheng]Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
  • [ 2 ] [Kadoch, Michel]Univ Quebec, Ecole Technol Super, Quebec City, PQ G1K 9H7, Canada
  • [ 3 ] [Yuan, Tongtong]Beijing Univ Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Liu, Qiang]Shandong Univ Sci & Technol, Coll Elect & Informat Engn, Qingdao 266590, Peoples R China
  • [ 5 ] [Lv, Wenzhe]China Cent Depository & Clearing Co Ltd, Beijing 100000, Peoples R China
  • [ 6 ] [Li, Bohan]Ocean Univ China, Qingdao, Peoples R China

通讯作者信息:

  • [Yuan, Tongtong]Beijing Univ Technol, Beijing 100124, Peoples R China;;

查看成果更多字段

相关关键词:

来源 :

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

ISSN: 2168-2194

年份: 2024

期: 6

卷: 28

页码: 3206-3218

7 . 7 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 8

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:569/4966956
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司