Indexed by:
Abstract:
We report the sublimation and phase transformation mechanisms of a two-dimensional (2D) chalcogenide SnSb2Te4 using a lab-developed in-situ electro-thermal testing system on a Cs-corrected transmission electron microscope. It reveals that the sublimation process is primarily governed by the surface energy mechanism, following an anisotropic route. The van der Waals (vdW) layers ending with Te atoms lead to the preferential sublimation on (003) plane, with the (1 1 4) and (117) planes accommodating the sublimation. It is uncovered for the first time, that the preferential and accommodated sublimation of Te and Sb atoms along the vdW planes results in short-range diffusion inducing a phase transition from rhombohedral SnSb2Te4 to rock-salt (Sn1-xSbx) Te. These results highlight complex physics processes of 2D materials under service conditions and the route of atomic-resolved electro-thermal research platforms for investigations of complex atomistic mechanisms of 2D materials by thermal-electric external fields.
Keyword:
Reprint Author's Address:
Source :
MATERIALS TODAY NANO
ISSN: 2588-8420
Year: 2024
Volume: 26
1 0 . 3 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: