收录:
摘要:
Antibiotic resistance has turned into a focus of universal public health concern. Wastewater treatment plants are considered as reservoirs of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs), which can be transmitted to the environment. In this research, an effective method for inactivating Escherichia coli DH5 alpha (E. coli DH5 alpha) carrying resistance genes was developed utilizing dual oxidant system of peroxymonosulfate (PMS) and sodium percarbonate (SPC) in the presence of ferrous ions (Fe(II)). The results indicated that E. coli DH5 alpha could be inactivated 6.36 log under the conditions of 0.50 mM PMS, 0.50 mM SPC and 0.50 mM Fe(II) after 30 min. Besides, the removal of different types of ARB and pollutants could also be achieved by Fe(II)/PMS/ SPC system. The quenching experiments and EPR analysis demonstrated that reactive species (center dot OH, SO4 center dot-, O2 center dot- , 1O2 and CO3 center dot- ) involved in the inactivation of E. coli DH5 alpha. Bacterial damage mechanisms were systematically studied in terms of cell structure and morphology, enzyme activity, malondialdehyde and intracellular reactive oxygen species levels. The inactivation of E. coli DH5 alpha in complex water matrix (including coexisting of anions and natural organic matter) and real wastewater was inhibited. The abundance of intracellular ARGs decreased by 1.15 log, whereas extracellular ARGs increased by 0.32 log. This research supplied a prospective approach for inhibiting the dissemination of antibiotic resistance.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
CHEMICAL ENGINEERING JOURNAL
ISSN: 1385-8947
年份: 2024
卷: 491
1 5 . 1 0 0
JCR@2022
归属院系: