• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Hao (Chen, Hao.) | Lai, Yingxu (Lai, Yingxu.) (学者:赖英旭) | Liu, Jing (Liu, Jing.) | Wanyan, Hanxiao (Wanyan, Hanxiao.)

收录:

EI Scopus SCIE

摘要:

Owing to the increasing number of cybersecurity threats targeting industrial control systems (ICSs), intrusion response systems (IRSs) have become essential. However, the current IRSs exhibit several limitations, such as neglecting physical domain security policies and relying significantly on expert input. While deep reinforcement learning (DRL) methods yield superior outcomes, they suffer from low interpretability and unreliability. This study introduces an interpretable cross-layer intrusion response system (ICL-IRS), which is a decision-tree-based IRS. It offers a robust understanding of cyberattacks and industrial control logic specific to ICSs. ICL-IRS employs a DRL model, tailored to the characteristics of physical process control, to refine policies. It then scrutinizes the optimized intrusion response policy and generates decision trees. Our experimental results reveal a 21% enhancement in the success rate of the proposed ICL-IRS over competing methods. The effectiveness of ICL-IRS was further validated through a case study on a simulated process-control system.

关键词:

Cybersecurity intrusion response system (IRS) deep reinforcement learning (DRL) imitation learning industrial control systems (ICSs)

作者机构:

  • [ 1 ] [Chen, Hao]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Lai, Yingxu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Liu, Jing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Wanyan, Hanxiao]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Lai, Yingxu]Beijing Univ Technol, Engn Res Ctr Intelligent Percept & Autonomous Cont, Minist Educ, Beijing 100124, Peoples R China

通讯作者信息:

  • [Lai, Yingxu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

ISSN: 1551-3203

年份: 2024

期: 7

卷: 20

页码: 9771-9781

1 2 . 3 0 0

JCR@2022

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:640/4958421
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司