收录:
摘要:
Fatigue failure mechanism of Ti60 titanium alloy under tension-torsion multiaxial loading in the very high cycle regime was studied first, and the results showed that the shear/axial stress ratio directly affects the failure mechanism. When the shear/axial stress ratio is relatively small, cracks tend to originate from the subsurface in single-point initiation mode, and the larger the shear/axial stress ratio, the more cracks tend to originate from the surface in multi-point initiation mode. Then, a pragmatic equivalent method for multiaxial to uniaxial load based on the law of shear/axial stress ratio on fatigue strength was proposed. Based on this method and uniaxial S-N curve, the fatigue lives of Ti60 specimens under shear/axial stress ratios of 1.37, 1.95, and 3.53 was predicted, and the experimental results showed that the prediction error is basically within a factor of 3.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
INTERNATIONAL JOURNAL OF FATIGUE
ISSN: 0142-1123
年份: 2024
卷: 184
6 . 0 0 0
JCR@2022
归属院系: