• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jian, Meng (Jian, Meng.) | Lang, Langchen (Lang, Langchen.) | Guo, Jingjing (Guo, Jingjing.) | Li, Zun (Li, Zun.) | Wang, Tuo (Wang, Tuo.) | Wu, Lifang (Wu, Lifang.) (学者:毋立芳)

收录:

EI Scopus SCIE

摘要:

Recommender systems filter information to meet users' personalized interests actively. Existing graph -based models typically extract users' interests from a heterogeneous interaction graph. They do not distinguish learning between users and items, ignoring the heterogeneous property. In addition, the interaction sparsity and long -tail bias issues still limit the recommendation performance significantly. Fortunately, hidden homogeneous correlations that have a considerable volume can entangle abundant CF signals. In this paper, we propose a light dual hypergraph convolution (LDHC) for collaborative filtering, which designs a hypergraph to involve heterogeneous and homogeneous correlations with more CF signals confronting the challenges. Over the integrated hypergraph, a two -level interest propagation is performed within the heterogeneous interaction graph and between the homogeneous user/item graphs to model users' interests, where learning on users and items is distinguished and collaborated by the homogeneous propagation. Specifically, hypergraph convolution is lightened by removing unnecessary parameters to propagate users' interests. Extensive experiments on publicly available datasets demonstrate that the proposed LDHC outperforms the state-of-the-art baselines.

关键词:

Graph convolution Personalized recommendation User interest Collaborative filtering Hypergraph

作者机构:

  • [ 1 ] [Jian, Meng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Lang, Langchen]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Guo, Jingjing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Zun]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Tuo]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Wu, Lifang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 7 ] [Jian, Meng]Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
  • [ 8 ] [Wu, Lifang]Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

PATTERN RECOGNITION

ISSN: 0031-3203

年份: 2024

卷: 154

8 . 0 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:313/4971300
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司