收录:
摘要:
M-type ferrite exhibits good magnetic characteristics and resistance to oxidation, enabling the production of stable nanoparticles for applications such as medical delivery, hyperthermia therapy, and magnetic recording. Additionally, it serves as a valuable tool for studying the theory of coercivity. Here, the impact of surface and size on coercivity and associated mechanisms in M-type hexagonal ferrites has been thoroughly analyzed by a combination of micromagnetic models and experimental investigations. Based on a cubic model and without considering surface defects, the coercivity still cannot reach the theoretical value. It decreases with an increase in particle size, and the quasi-coherent and quasi-flower reversal modes appear continuously. Besides, surface defects do not affect the reversal mode, but they do decrease the coercivity and magnetic hardening effect, hence further amplifying the difference between coercivity and its theoretical value. The simulation results are strongly supported by experimental data. This study extensively examines the coercivity of M-type ferrite particles produced by various preparation methods, taking into account experimental observations and simulation results. Our findings can serve as guidance for the development of preparation technology for permanent magnet nanoparticles and contribute to a deeper understanding of the contradictions in coercivity and the mechanisms of magnetization reversal.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
SURFACES AND INTERFACES
ISSN: 2468-0230
年份: 2024
卷: 46
6 . 2 0 0
JCR@2022
归属院系: