• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Lin, Shaofu (Lin, Shaofu.) | Huang, Lei (Huang, Lei.) | Liu, Xiliang (Liu, Xiliang.) | Chen, Guihong (Chen, Guihong.) | Fu, Zhe (Fu, Zhe.)

收录:

Scopus SCIE

摘要:

Construction waste is unavoidable in the process of urban development, causing serious environmental pollution. Accurate assessment of municipal construction waste generation requires building construction waste identification models using deep learning technology. However, this process requires high-quality public datasets for model training and validation. This study utilizes Google Earth and GF-2 images as the data source to construct a specific dataset of construction waste landfills in the Changping and Daxing districts of Beijing, China. This dataset contains 3,653 samples of the original image areas and provides mask-labeled images in the semantic segmentation domains. Each pixel within a construction waste landfill is classified into 4 categories of the image areas, including background area, vacant landfillable area, engineering facility area, and waste dumping area. The dataset contains 237,115,531 pixels of construction waste and 49,724,513 pixels of engineering facilities. The pixel-level semantic segmentation labels are provided to quantify the construction waste yield, which can serve as the basic data for construction waste extraction and yield estimation both for academic and industrial research.

关键词:

作者机构:

  • [ 1 ] [Lin, Shaofu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Huang, Lei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Liu, Xiliang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Chen, Guihong]Beijing Big Data Ctr, Beijing 100101, Peoples R China
  • [ 5 ] [Fu, Zhe]Beijing Econ Technol Dev Area, Adm Examinat & Approval Bur, Beijing 100176, Peoples R China

通讯作者信息:

  • [Liu, Xiliang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Fu, Zhe]Beijing Econ Technol Dev Area, Adm Examinat & Approval Bur, Beijing 100176, Peoples R China;;

查看成果更多字段

相关关键词:

相关文章:

来源 :

SCIENTIFIC DATA

年份: 2024

期: 1

卷: 11

9 . 8 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:562/4966868
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司