• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhixuan, Wu (Zhixuan, Wu.) | Nan, Ma (Nan, Ma.) | Cheng, Wang (Cheng, Wang.) | Cheng, Xu (Cheng, Xu.) | Genbao, Xu (Genbao, Xu.) | Mingxing, Li (Mingxing, Li.)

收录:

EI Scopus SCIE

摘要:

For the problems of irrelevant frames and high model complexity in action recognition, we propose a Spatial- Temporal Hypergraph based on Dual -Stage Attention Network (STHG-DAN) for multi-view data lightweight action recognition. It includes two stages: Temporal Attention Mechanism based on Trainable Threshold (TAMTT) and Hypergraph Convolution based on Dynamic Spatial-Temporal Attention Mechanism (HG-DSTAM). In the first stage, TAM-TT uses a learning threshold to extract keyframes from multi-view videos, with the multiview data serving as a guarantee for providing more comprehensive information subsequently; In the second stage, HG-DSTAM divides the human joints into three parts: trunk, hand and leg to build spatial-temporal hypergraphs, extracts high -order features from spatial-temporal hypergraphs constructed of multi-view human body joints, inputs them into the dynamic spatial-temporal attention mechanism, and learns the intra frame correlation of multi-view data between the joint features of body parts, which can obtain the significant areas of action; We use multi-scale convolution operation and depth separable network, which can realize efficient action recognition with a few trainable parameters. We experiment on the NTU-RGB+D, NTU-RGB+D 120 and the imitating traffic police gesture dataset. The performance and accuracy of the model are better than the existing algorithms, effectively improving the machine and human body language interaction cognitive ability.

关键词:

Action recognition Multi-view Dual-stage attention network Salient region Spatial-temporal hypergraph neural network

作者机构:

  • [ 1 ] [Zhixuan, Wu]Beijing Union Univ, Beijing Key Lab Informat Serv Engn, Beijing 100101, Peoples R China
  • [ 2 ] [Cheng, Wang]Beijing Union Univ, Beijing Key Lab Informat Serv Engn, Beijing 100101, Peoples R China
  • [ 3 ] [Cheng, Xu]Beijing Union Univ, Beijing Key Lab Informat Serv Engn, Beijing 100101, Peoples R China
  • [ 4 ] [Mingxing, Li]Beijing Union Univ, Beijing Key Lab Informat Serv Engn, Beijing 100101, Peoples R China
  • [ 5 ] [Nan, Ma]Beijing Univ Technol, Fac Informat & Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Genbao, Xu]Beijing Univ Technol, Fac Informat & Technol, Beijing 100124, Peoples R China
  • [ 7 ] [Nan, Ma]Beijing Univ Technol, Engn Res Ctr Intelligence Percept & Autonomous Con, Minist Educ, Beijing 100124, Peoples R China
  • [ 8 ] [Genbao, Xu]Beijing Univ Technol, Engn Res Ctr Intelligence Percept & Autonomous Con, Minist Educ, Beijing 100124, Peoples R China

通讯作者信息:

  • [Nan, Ma]Beijing Univ Technol, Fac Informat & Technol, Beijing 100124, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

PATTERN RECOGNITION

ISSN: 0031-3203

年份: 2024

卷: 151

8 . 0 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:480/4956648
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司