• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

He, Bo-Hu (He, Bo-Hu.) | Du, Xiu-Li (Du, Xiu-Li.) (学者:杜修力) | Bai, Ming-Zhou (Bai, Ming-Zhou.) | Yang, Jin-Wen (Yang, Jin-Wen.) | Ma, Dong (Ma, Dong.)

收录:

EI Scopus SCIE

摘要:

The accuracy of slope mechanical parameter values determines the accuracy of slope stability assessments and the effectiveness of protective measures. Traditional methods for obtaining geotechnical parameters cannot entirely take into consideration the size, disturbance, variability, and uncertainty of mechanical parameters. Hence, we aimed to propose two algorithmic models for the geotechnical parameters of highway slope materials based on an improved non-dominated sorting genetic algorithm II (NSGA-II) combined with a GA-optimised backpropagation (BP) neural network (NN),named BPGA- NSGA-II model and improved BPGA- NSGA-II model.The results indicated that compared with the original NSGA-II model, the improved model showed a substantial shift in the Pareto front, and the errors are smaller than the original model.Among the two improved models, the improved BPGA-NSGA-II model has higher inversion accuracy.Therefore, this study provides a scientifically effective method for improving the accuracy of the geotechnical parameter inversion for highway slope materials.

关键词:

Inversion Mechanical parameters Geotechnical parameters Improved NSGA-II algorithm Highway slope

作者机构:

  • [ 1 ] [He, Bo-Hu]China Railway 16th Bur Grp Co Ltd, Postdoctoral Res Workstat, Beijing 100018, Peoples R China
  • [ 2 ] [Yang, Jin-Wen]China Railway 16th Bur Grp Co Ltd, Postdoctoral Res Workstat, Beijing 100018, Peoples R China
  • [ 3 ] [Ma, Dong]China Railway 16th Bur Grp Co Ltd, Postdoctoral Res Workstat, Beijing 100018, Peoples R China
  • [ 4 ] [He, Bo-Hu]Beijing Univ Technol, Fac Urban Construct, Beijing 100124, Peoples R China
  • [ 5 ] [Du, Xiu-Li]Beijing Univ Technol, Fac Urban Construct, Beijing 100124, Peoples R China
  • [ 6 ] [Bai, Ming-Zhou]Beijing Jiaotong Univ, Sch Civil Engn, Beijing 100044, Peoples R China

通讯作者信息:

  • [He, Bo-Hu]China Railway 16th Bur Grp Co Ltd, Postdoctoral Res Workstat, Beijing 100018, Peoples R China;;[He, Bo-Hu]Beijing Univ Technol, Fac Urban Construct, Beijing 100124, Peoples R China;;[Du, Xiu-Li]Beijing Univ Technol, Fac Urban Construct, Beijing 100124, Peoples R China;;

查看成果更多字段

相关关键词:

来源 :

COMPUTERS AND GEOTECHNICS

ISSN: 0266-352X

年份: 2024

卷: 171

5 . 3 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:515/4957982
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司