Indexed by:
Abstract:
The prediction of appliances energy consumption in building belongs to time series forecasting problem, which can be solved by echo state network (ESN). However, due to the randomly initialized inputs and reservoir, some redundant or irrelevant components are inevitably generated in original ESN. To solve this problem, the adaptive sparse deep echo state network (ASDESN) is proposed, in which the information is processed layer by layer. Firstly, the principal component analysis (PCA) layer is inserted to penalize the redundant projection transmitted between sub-reservoirs. Secondly, the coordinate descent based adaptive sparse learning method is proposed to generate the sparse output weights. Particularly, the designed adaptive threshold strategy is able to enlarge the sparsity of output weights as network depth increases. Moreover, the echo state property (ESP) of ASDESN is given to ensure its applications. The experiment results in both simulated benchmark and real appliances energy datasets illustrate that the proposed ASDESN outperforms other ESNs with higher prediction accuracy and stability.
Keyword:
Reprint Author's Address:
Email:
Source :
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS
ISSN: 0098-3063
Year: 2024
Issue: 1
Volume: 70
Page: 3582-3592
4 . 3 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: