• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yue, Li Li (Yue, Li Li.) | Wang, Wei Tao (Wang, Wei Tao.) | Li, Gao Rong (Li, Gao Rong.) (学者:李高荣)

收录:

Scopus SCIE

摘要:

The penalized variable selection methods are often used to select the relevant covariates and estimate the unknown regression coefficients simultaneously, but these existing methods may fail to be consistent for the setting with highly correlated covariates. In this paper, the semi-standard partial covariance (SPAC) method with Lasso penalty is proposed to study the generalized linear model with highly correlated covariates, and the consistencies of the estimation and variable selection are shown in high-dimensional settings under some regularity conditions. Some simulation studies and an analysis of colon tumor dataset are carried out to show that the proposed method performs better in addressing highly correlated problem than the traditional penalized variable selection methods.

关键词:

Generalized linear model variable selection highly correlated covariates semi-standard partial covariance Lasso penalty

作者机构:

  • [ 1 ] [Yue, Li Li]Nanjing Audit Univ, Sch Stat & Data Sci, Nanjing 211815, Peoples R China
  • [ 2 ] [Wang, Wei Tao]Beijing Univ Technol, Sch Math Stat & Mech, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Gao Rong]Beijing Normal Univ, Sch Stat, Beijing 100875, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

ACTA MATHEMATICA SINICA-ENGLISH SERIES

ISSN: 1439-8516

年份: 2024

期: 6

卷: 40

页码: 1458-1480

0 . 7 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:305/4975329
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司